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Abstract. In the semisimple case, we derive (asymptotic) formulas for the growth rate of the number of
summands in tensor powers of the generating object in diagram/interpolation categories.
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1. Introduction

We begin with the following table, the meaning of which we will explain shortly:

Symbol Diagrams X n
√
bn ∼

Cobk • 2
e · n

log 2n/k

Symbol Diagrams X n
√
bn ∼ Symbol Diagrams X n

√
bn ∼

pPat • 4 Pat • 2
e · n

log 2n

Mot • 3 RoBrt •
√
2√
e
·
√
n

T Lt • 2 Brt •
√
2√
e
·
√
n

pRot • 2 Rot •
√
1√
e
·
√
n

pSt • 1 St •
√
1√
e
·
√
n

Symbol Diagrams X n
√
bn ∼ Symbol Diagrams X n

√
bn ∼

oBrt ↑
√
1√
e
·
√
n oBrt ↑↓ 2

e · n

Symbol Diagrams X n
√
bn ∼

Rep
(
GLt(Fq)

)
+ + + + a for a ∈ Fq • qn

(1.1)

Let C be an additive Krull–Schmidt monoidal category. Let X ∈ C be an object of C. We define

bn = bC,X
n := #indecomposable summands in X⊗n counted with multiplicities.

When C is semisimple, then bn = ln, the latter counting the number of simple factors in X⊗n, and we will use
this implicitly throughout.
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2 J. GRUBER AND D. TUBBENHAUER

Notation 1.2. We also consider the function Z≥0 → Z≥0, n 7→ bn, which we denote by the same symbol.
More generally, we identify sequences with their associated functions. 3

The function bn has been the subject of extensive study; see, for example, [CEOT24,LPRS24,Lar24,
He24, HT25] for some recent work. In particular, in well-behaved categories, such as finite-dimensional
representations of a group [COT24,LTV23,LTV24], one has

lim
n→∞

n
√

bn ∈ R≥1, exponential growth

which shows that bn grows exponentially. In contrast, some still well-structured categories exhibit super-
exponential growth, meaning that

n
√

bn is unbounded, superexponential growth

as observed in [Del07].
We study the asymptotic behavior of n

√
bn in the following cases, all in the semisimple situation (all param-

eters are generic) and over the complex numbers. Our starting point are prototypical examples of diagram
categories: quotients of the cobordism category Cobk, see [KS24, KOK22] or [Koc04] for the purely
topological incarnation. Here the objects are one-dimensional compact manifolds (circles) and the morphisms
are two-dimensional cobordisms (pants), which we will draw using their spines with handles as dots:

↭ , ↭ , ↭ , ↭ , etc.

Such categories depend on the choice of a generating function as a quotient of two polynomials p/q, but for
us only k = max{deg p + 1,deg q} plays a role. More precisely, the coefficients ai of the Taylor expansion of
p/q are used to evaluate closed surfaces:

= a0, = a1, = a2, ...,(1.3)

and k is the degree of a minimal polynomial of the handle. A special case for p = 1, q = 1− x, so k = 1, is the
partition category Pat, where all handles disappear

= t · ,

and t = a0 = a1 = ... ∈ C (generic in this paper) is the value of floating components, which was the category
studied in [Del07]. From this we also get subcategories of the partition category that are related to the
classical diagram monoids, defining their diagrams. These monoids are the endomorphism monoids of the
respective categories for t = 1 (the list is taken from [KST24]):

• The partition monoid Pan of all diagrams of partitions of a 2n-element set.

• The rook-Brauer monoid RoBrn consisting of all diagrams with components of size 1, 2.

• The Brauer monoid Brn consisting of all diagrams with components of size 2.

• The rook monoid Ron consisting of all diagrams with components of size 1, 2, and all partitions have
at most one component at the bottom and at most one at the top.

• The symmetric group Sn consisting of all matchings with components of size 1.

• Planar versions of these: pPan, pRoBrn = Mon, pBrn = T Ln, pRon and pSn
∼= 1 (the latter

denotes the trivial monoid). The planar rook-Brauer monoid is also called Motzkin monoid, the
planar Brauer monoid is also known as Temperley–Lieb monoid, and the planar symmetric group
is trivial.

• Additionally, there are oriented versions of these. The one we will use is the oriented Brauer monoid
oBrn, which is Brn with orientations.

We also consider diagram categories that do not come from monoids. Precisely, the diagram categories
that interpolate the categories of finite-dimensional complex representations of Rep

(
GLn(Fq)

)
, as studied

in [Kno06] (these are diagram categories by [EAH22], namely, these have partition diagrams plus extra
generators).
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Remark 1.4. When referred to as interpolation categories (potentially after taking some envelope), Pat,
Brt and oBrt are often called Deligne(–Jones–Martin) categories Rep(Sn), Rep

(
OSPt(C)

)
(or Rep

(
Ot(C)

)
)

and Rep
(
GLt(C)

)
, respectively, sometimes denote with an underline (similarly for Rep

(
GLn(Fq)

)
). Since we

focus on the semisimple case, there will be no difference between the additive or abelian versions. 3

Summarized with X denoting the chosen object and ∼ meaning asymptotically equal, our results are
summarized in (1.1).

Following [KST24], we establish these results using the Green relations and the cell structure of the
associated monoids and diagram algebras, with the key ingredient being their sandwich cellular structure
[Bro55,TV23,Tub24]. This (new) perspective simplifies the problem significantly: in most cases, the first
step of counting has already been carried out in semigroup theory—albeit from a very different viewpoint—
under the framework of Gelfand models [HR15]. The only exceptions are Cobk and Rep

(
GLt(Fq)

)
, which we

analyze in detail. This approach yields exact formulas for bn.
The remaining task—deriving asymptotics from these exact formulas—is nontrivial. However, as we show

below, we have formalized the process so that it is computer-verified. For brevity, we have outsourced the
computational aspects to [GT25], where they are freely available (at least in 2025).

Acknowledgments. We thank Johannes Flake for helpful comments and discussions. JG also acknowledges
financial support through the DFG project 531430348 and expresses gratitude for the support and hospitality
provided by the Sydney Mathematical Research Institute (SMRI). DT was supported by the ARC Future
Fellowship FT230100489 and is deeply committed to the belief in the importance of open access.

2. Schur–Weyl duality, sandwich cellular algebras and growth problems

For some field K, assume that one has an additive Krull–Schmidt monoidal K-linear category C with finite-
dimensional hom-spaces, and an object X ∈ C. For simplicity, assume that C is semisimple. A version of
Schur–Weyl duality implies that (Y is a simple summand of X⊗n that appears with multiplicity m > 0 if and
only if the semisimple algebra An = EndC(X

⊗n) has a simple representation LY of dimension dimK LY = m),
and there is a bijection between such Y and LY. In particular, we have:

Lemma 2.1. In the above setting, An is semisimple and

bn =
∑
L

dimK L, (sum over simple An-representations L).

Proof. Directly from the above discussion, which, in turn, can be justified as in [AST18, Section 4C]. See
also [Erd95,Soe99]. □

We will now assume familiarity with sandwich cellular algebras [Bro55,TV23,Tub24], or at least with
some variation of it, most notably, [FG95].

Lemma 2.2. If An is a semisimple involutive sandwich cellular algebra with apex set Pap, bottom sets Bλ and
sandwiches algebras Hλ, then

bn =
∑

λ∈Pap

(
#Bλ ·

∑
L

dimK L
)
, (inner sum over simple Hλ-representations L).

Proof. Directly from Lemma 2.1 and the standard theory of sandwich cellular algebras. □

We will use Lemma 2.2 throughout.

3. Examples

We now go through the list of example in Section 1. We will discuss Cobk and Rep
(
GLt(Fq)

)
carefully. All

other cases are similar to the count in Cobk, so we just list the needed results for them.

3A. Cobordisms. In the notation of the introduction, let Cob∞ be the monoidal category with ⊗-generating
object • and generating ◦-⊗-generating morphisms

multiplication: , comultiplication: , unit: , counit: , crossing: ,

modulo the ◦-⊗-ideal that makes the crossing a symmetry and • a symmetric Frobenius object with the
structure maps matching the nomenclature. See [Koc04] for details.

The diagrammatic antiinvolution ∗ flips a cobordism up-side-down. We call a diagram a merge di-
agram if it contains only multiplications, counits and a minimal number of crossings. A split diagram is
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a ∗-flipped merge diagram. A dotted permutation diagram contains only dots (=handles) and crossings.
Here are some examples (flipping the left illustration gives a split diagram):

Merge diagram: , dotted permutation diagram: .

Abusing notation, for a field K we denote the K-linear extension of the cobordism category also by Cob∞.
Recall sandwich cellularity, the picture for Cobk is:

T

m

B

where

T a split diagram,

m a dotted permutation,

B a merge diagram.

Involution:

 T

m

B


∗

=

B

m

T

.(3A.1)

We call the existence of a spanning set with a decomposotion as above a precell structure and the respective
algebras presandwich.

Lemma 3A.2. The endomorphism algebras of Cob∞ are involutive presandwich cellular with precell structure
as in (3A.1).

Proof. Immediate from [Koc04, Section 1.4.16]. □

Now fix two polynomials p, q ∈ K[x], and consider the Taylor expansion of p(x)/q(x) =
∑∞

i=0 aix
i, and

let k = max{deg p + 1,deg q}. Let Cobk be the quotient of Cob∞ by the ◦-⊗-ideal generated by (1.3). (The
category Cobk actually depends on p, q but we suppress this in the notation.)

Example 3A.3. For p = 1 and q = 1− x we have p(x)/q(x) = 1+ x+ x2 + x3 + ... so that all closed surfaces
in Cobk evaluate to 1. We call the resulting category the partition category. 3

Let us denote the endomorphism monoid of •⊗n by Cobk(n). Recall the Ariki–Koike algebra (cyclotomic
Hecke algebra) as defined in [AK94,BM93,Che87].

Lemma 3A.4. Dotted permutations in Cobk(n) span an algebra isomorphic to the Ariki–Koike algebra A(n, k)
on n strands with a cyclotomic relation of degree k and trivial quantum parameter. Moreover, Lemma 3A.2
can be refined into a sandwich cell datum with A(m, k) for m ∈ {0, ..., n} as the sandwiched algebras.

Proof. This follows from [KOK22], e.g. the text around (11) therein, which implies that the handles satisfy
a minimal polynomial of degree k, and the same arguments as in [TV23, Section 6]. □

For the next statement we assume familiarity with the usual tableaux combinatorics, see, for example,
[DJM98,Mat99].

Proposition 3A.5. Let K be of characteristic p.
(a) The set of apexes of KCobk(n) is {0, ..., n}.
(b) The finite-dimensional simple KCobk(n)-modules of apex m, up to equivalence, are indexed by p-

restricted k-multipartitions of m.

(c) The dimensions of the cell representation for a p-restricted k-multipartition λ of m is

#{merge diagrams with m top strands} ·#{standard tableaux of shape λ}.

Moreover, if KCobk(n) is semisimple, then the cell representations are simple.

Proof. Immediate from the standard theory of sandwich cellular algebras as, e.g., in [Tub24], Lemma 3A.4
and the cell structure of A(m, k) as, for example, in [DJM98, Theorem 3.26]. □

We now need come counting lemmas.

Lemma 3A.6. The number of merge diagrams from n bottom strands to m top strands is

Mm
n =

n∑
i=m

{
n
i

}(
i

m

)
,

where the curly brackets denote the Stirling numbers of the second kind.

Proof. A standard count that is independent of k, and therefore the same as in the partition category. Details
are omitted; however, if the reader encounters difficulties, [HR15, Section 4] provides helpful guidance. □

Let STab(m, k) is the set of standard k-multitableaux of m and let #STab(m, k) denote its size. Assume
from now that K = C and that Cobk is semisimple.
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Lemma 3A.7. We have the formula

bn =

n∑
m=0

Mm
n #STab(m, k).

Proof. By Proposition 3A.5 and Lemma 3A.6. □

Lemma 3A.8. bn has exponential generating function exp(k2 exp(2x) + exp(x)− k+2
2 ).

Proof. We first observe that

#STab(m, k) = k⌈m/2⌉
∑

i∈Z≥0

Bes(m, i)k⌊m/2⌋−i,

where we use the Bessel numbers Bes(m, i) = m!/(i!(n− 2i)!2i). Thus, we get

bn =

n∑
m=0

∑
i∈Z≥0

Mm
n k⌈m/2⌉Bes(m, i)k⌊m/2⌋−i,

and we can use the same calculations as in [Qua07, Section 3] (which only uses the exponential generating
functions for the Stirling and Bell numbers). □

Lemma 3A.9. We have the asymptotic formula

bn ∼
(
n
z

)n+ 1
2 exp(k2 ) exp(2z + 1) exp(z − n− k+2

2 )√
2k
2 exp(2z)(2z + 1) + exp(z)(z + 1)

,

z =
W
(
2n
k

)
2

− 1

4
(
k
2

)
n1− 1

2

(
W
(
2n
k

)
+ 1
)
W
(
2n
k

) 1
2−2

+ 2

W( 2n
k )

+ 1
,

where W is the Lambert W function.

Proof. Having Lemma 3A.8, the proof of this is automatized, see for example [GT25,Kot22]. This works
roughly as follows. Let f be the exponential generating function. One then uses Hayman’s method [Hay56]
and computes the asymptotic of limx→∞ xf ′(x)/f(x). □

Theorem 3A.10. The formula in (1.1) holds.

Proof. The proof is also automatized, using Lemma 3A.9 and the code on [GT25]. Essentially, Mathematica
has a build in function for this purpose that does exact calculations. (We are referring to ‘Asymptotic’;
Introduced in 2020 (12.1) | Updated in 2022 (13.2).) □

3B. Partition algebras. For Pan we simply specialize k = 1 in Section 3A. See also Example 3A.3. The
corresponding sequence for bn is [OEI23, A002872]. However, following [OEI23, A002872] one gets other,
slightly nastier, formulas, namely:

bn ∼
(

2n

W(2n)

)n

· exp

(
n

W(2n)
+

(
2n

W(2n)

) 1
2

− n− 7

4

)/√
1 + W(2n),

n
√

bn ∼ 2

e
· n

log 2n
log 2n

√
e.

3C. Subalgebras of partition algebras. By an easy (and well known) diagrammatic argument we get
pPan ∼= T L2n, we already discussed Pan and pSn is trivial, so we do not need to address these cases. Let us
list the sandwich cellular bases for the remaining diagram categories:

Mon, T Ln,pRon :

T cup and unit diagrams,

m an identity,

B cap and counit diagram,

RoBrn,Brn,Ron :

T cup and unit diagrams,

m a permutation,

B cap and counit diagram.

For the symmetric group Sn the sandwich structure is trivial.
From this one gets explicit formulas, matching the ones in [HR15, Section 4]. Here is the list of remaining

sequences:

Mon : [OEI23, A005773], RoBrn : [OEI23, A000898],
T Ln : [OEI23, A000984], Brn : [OEI23, A047974],
pRon : [OEI23, A000079], Ron : [OEI23, A005425],

Sn : [OEI23, A000085].
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Let us just focus on Brn; the others being similar. In this case the exponential generating function is exp(x2+x),
and Mathematica gives

bn ∼ 2
n
2 − 1

2 exp

(√
n

2
− n

2
− 1

8

)
n

n
2 ,

n
√
bn ∼

√
2√
e
·
√
n.

This completes the proof.

3D. Oriented Brauer algebras. The left case in (1.1) is the same as for Sn. For the right case, we observe
that crossings provide isomorphisms, so we can reorder (↑↓)n to n upwards pointing arrows followed by n
downwards pointing arrows. Thus, the sandwich structure is (or rather, can be arranged to be) as follows.

oBrn :

T cup diagrams passing the middle,

m a ↑ permutation and a ↓ permutation,

B cap diagram passing the middle.

The set of cap diagrams passing the middle can be identified with matchings of size n − k of {1, ..., n} with
{1′, ..., n′}, which has size

(
n
k

)2
(n − k)!. Moreover, let cd(k) denote the sum of the dimensions of simple Sk-

representations, i.e. the sequence [OEI23, A000085], which has exponential generating function exp( 12x
2+x).

A calculation, using the recursion cd(n) = cd(n− 1) + (n− 1)cd(n− 2), shows

cd(m+ n) =
∑
k≥0

k!

(
m

k

)(
n

k

)
cd(m− k)cd(n− k).

Taking everything together, we get

bn =

n∑
k=0

cd(k)2
(
n

k

)2

(n− k)! = cd(2n),

and Mathematica proves

bn ∼ nn2n−1/2 exp(−n+
√
2n− 1/4)(1 + 7/(24

√
2n)),

and the result in (1.1) itself.

Remark 3D.1. For the lover of diagrammatics, as an alternative argument one could reorder (↑↓)n to n upwards
pointing arrows followed by n downwards pointing arrows, as above, and then use that caps and cups are also
invertible operations to bend the diagrams to look like S2n. 3

3E. The general linear group over a finite field. Throughout this subsection, we fix a prime power q.
We start by recalling the definition of the interpolation category Rep(GLt(Fq)), following [Kno07], and by
explaining the sandwich cellular structure for endomorphism algebras in Rep(GLt(Fq)).

3E.1. The definition of Rep(GLt(Fq)). For m,n ∈ Z≥0, let us write Gr(Fm
q ,Fn

q ) for the set of linear subspaces
of Fm

q ⊕ Fn
q . For two subspaces V ∈ Gr(Fm

q ,Fn
q ) and W ∈ Gr(Fℓ

q,Fm
q ), the convolution V ⋆ W ∈ Gr(Fℓ

q,Fn
q ) is

defined as the image in Fℓ
q ⊕ Fn

q of the pullback W ×Fm
q
V , as in the following diagram.

W ×Fm
q
V

W V ⋆W V

Fℓ
q Fm

q Fn
q

e

Furthermore, we write d(V,W ) = dimker(e) for the dimension of the kernel of the canonical epimorphism
e : W ×Fm

q
V → V ⋆ W .

Definition 3E.1. For a complex parameter t ∈ C, the C-linear category Rep(GLt(Fq))0 has objects Z≥0 and

HomGLt(Fq)(m,n) = CGr(Fm
q ,Fn

q )

for m,n ∈ Z≥0, the C-vector space with basis Gr(Fm
q ,Fn

q ). The composition of homomorphisms is defined via

V ◦W = td(V,W ) · V ⋆W

for V ∈ Gr(Fm
q ,Fn

q ) and W ∈ Gr(Fℓ
q,Fm

q ), extended by bilinearity.
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The category Rep(GLt(Fq)) is the Karoubi envelope of Rep(GLt(Fq))0 (i.e. the idempotent completion of
the additive envelope). 3

The category Rep(GLt(Fq)) has a canonical C-linear symmetric monoidal structure, with tensor unit 1 = 0
and tensor product given by m⊗ n = m+ n and

V ⊗W = V ⊕W ⊆ (Fm
q ⊕ Fn

q )⊕ (Fm′

q ⊕ Fn′

q )

for V ∈ Gr(Fm
q ,Fm′

q ) and W ∈ Gr(Fn
q ,Fn′

q ), where the tensor product on the left hand side is taken in
Rep(GLt(Fq)) and the direct sum on the right hand side is taken in Fq-vector spaces. Equipped with this
monoidal structure, the category Rep(GLt(Fq)) is rigid, with evaluation and coevaluation maps both given by
the diagonal subspace diag(m) = {(v, v) | v ∈ Fm

q } ⊆ F2m
q , viewed either as a homomorphism m ⊗ m → 0

or as a homomorphism 0 → m ⊗ m. The dual of V ∈ Gr(Fm
q ,Fn

q ), viewed as a homomorphism m → n in
Rep(GLt(Fq)), is the subspace

V ∗ = {(v, w) ∈ Fn
q ⊕ Fm

q | (w, v) ∈ V } ∈ Gr(Fn
q ,Fm

q ),

viewed as a homomorphism n → m.

Remark 3E.2. For an n×m matrix M with entries in Fq, the graph G(M) = {(v,Mv) | v ∈ Fm
q } is a subspace

of Fm
q ⊕Fn

q , and for an m× ℓ matrix M ′ with entries in Fq, one easily checks that G(M) ◦G(M ′) = G(MM ′).
In particular, the group algebra C[GLn(Fq)] is a subalgebra of the endomorphism ring EndGLt(Fq)(n). 3

3E.2. Sandwich cellular structure. The sandwich cellular structure of endomorphism algebras in Rep(GLt(Fq))
relies on so-called core factorizations, as explained (in a more general setting) in [Kno07, Section 5]. For
m ≥ n ≥ 0, let us write GrIS(Fm

q ,Fn
q ) for the set of subspaces V of Fm

q ⊕ Fn
q such that the projection V → Fm

q

is injective and the projection V → Fn
q is surjective, and similarly define GrSI(Fn

q ,Fk
q ) as the set of subspaces

V of Fn
q ⊕ Fm

q such that the projection V → Fn
q is surjective and the projection V → Fm

q is injective.1

Lemma 3E.3 (Core factorization). Let m,n ∈ Z≥0 and V ∈ Gr(Fm
q ,Fn

q ).

(a) There is some k ≤ min{m,n} and V1 ∈ GrIS(Fm
q ,Fk

q ) and V2 ∈ GrSI(Fk
q ,Fn

q ) such that V = V2 ◦ V1.

(b) For any ℓ ≤ min{m,n} and V ′
1 ∈ GrIS(Fm

q ,Fℓ
q) and V ′

2 ∈ GrSI(Fℓ
q,Fn

q ) such that V = V ′
2 ◦ V ′

1 , we have
ℓ = k and there is M ∈ GLk(Fq) such that V ′

1 = G(M) ◦ V1 and V2 = V ′
2 ◦G(M).

In other words, the composition of homomorphisms in Rep(GLt(Fq)) gives rise to a bijection

(3E.4)
⊔

k≤min{m,n}

(
GrIS(Fm

q ,Fk
q )×GrSI(Fk

q ,Fn
q )
) /

GLk(Fq)
1:1−−−→ Gr(Fm

q ,Fn
q ),

where M ∈ GLk(Fq) acts on GrIS(Fm
q ,Fk

q ) ×GrSI(Fk
q ,Fn

q ) via (V1, V2) 7→ (G(M) ◦ V1, V2 ◦G(M−1)). Further
note that GLk(Fq) acts freely on GrIS(Fm

q ,Fk
q ) and GrSI(Fk

q ,Fn
q ) via (M,V1) 7→ G(M) ◦ V1 and (M,V2) 7→

V2 ◦ G(M−1), respectively. In particular, for any fixed sets of representatives GrIS0 (Fm
q ,Fk

q ) and GrSI0 (Fk
q ,Fn

q )

for the GLk(Fq)-orbits in GrIS(Fm
q ,Fk

q ) and GrSI(Fk
q ,Fn

q ), respectively, we have a bijection

(3E.5) GrIS0 (Fm
q ,Fk

q )×GLk(Fq)×GrSI0 (Fk
q ,Fn

q )
1:1−−−→

(
GrIS(Fm

q ,Fk
q )×GrSI(Fk

q ,Fn
q )
) /

GLk(Fq),

which sends a triple (V1,M, V2) to the GLk(Fq)-orbit of (G(M)◦V1, V2). These observations essentially supply
all of the data that makes up a sandwich cellular structure on the endomorphism algebras in Rep(GLt(Fq)),
following [Tub24, Definition 2A.3]. Namely, for n ∈ Z≥0, the sandwich cell datum (P, (T ,B), (Hk, Bk), C) for
the algebra A = EndGLt(Fq)(n) is defined as follows:

• The middle poset is P = {k ∈ Z≥0 | k ≤ n}, endowed with the usual partial order on integers.
• The top and bottom sets are given by T =

⊔
k≤n T (k) and B =

⊔
k≤n B(k), with

T (k) = GrSI0 (Fk
q ,Fn

q ), B(k) = GrIS0 (Fn
q ,Fk

q ).

• The sandwiched algebras are the group algebras Hk = C[GLk(Fq)], with a fixed choice of basis given
by Bk = {M | M ∈ GLk(Fq)}.

• The map C :
⊔

k≤n T (k)×Bk × B(k) −→ A indexing the sandwich cellular basis is given by

(V1,M, V2) 7−→ ckV1,M,V2
= V1 ◦G(M) ◦ V2.

We write A≤k and A<k for the subspaces of A that are spanned by the elements cℓV1,M,V2
with ℓ ≤ k or ℓ < k,

respectively. The axioms (AC1)–(AC3) from [Tub24, Definition 2A.3] are checked as follows:
(AC1) It is clear from (3E.4) and (3E.5) that C indexes the basis Gr(Fn

q ,Fn
q ) of

A = EndGLt(Fq)(n) = CGr(Fn
q , F

n
q ).

1The notation IS stands for “injective-surjective”, and SI is for “surjective-injective”.
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(AC2) Let (V1,M, V2) ∈ T (k)×Bk×B(k) for some k ≤ n, and let W ∈ Gr(Fn
q ,Fn

q ). We fix a core factorization

W = W1 ◦W2,

where W1 ∈ GrSI(Fℓ
q,Fn

q ) and W2 ∈ GrIS(Fn
q ,Fℓ

q) for some ℓ ≤ n, and a core factorization

W2 ⋆ V1 = X1 ◦X2,

where X1 ∈ GrSI(Fm
q ,Fℓ

q) and X2 ∈ GrIS(Fk
q ,Fm

q ) for some m ≤ min{k, ℓ}. Then we have

W ◦ ckV1,M,V2
= W1 ◦W2 ◦ V1 ◦G(M) ◦ V2 = td(W2,V1) · (W1 ◦X1) ◦ (X2 ◦G(M) ◦ V2),

where W1 ◦X1 ∈ GrSI(Fm
q ,Fn

q ) and X2 ◦G(M) ◦ V2 ∈ GrIS(Fn
q ,Fm

q ). If m < k then it follows that

W ◦ ckV1,M,V2
≡ 0 mod A<k,

and this statement is independent of V2 since m only depends on W2 and V1. If m = k then there
is some M ′ ∈ GLℓ(Fq) such that X2 = G(M ′), and we can further choose X ∈ GrSI0 (Fk

q ,Fn
q ) and

N ∈ GLk(Fq) such that

W1 ◦X1 ◦G(M ′) ◦G(M) = X ◦G(N).

Then it follows that

W ◦ ckV1,M,V2
= td(W2,V1) · (X ◦G(N) ◦ V2) = td(W2,V1) · ckX,N,V2

,

and the scalar td(W2,V1) is again independent of V2, as required.
(AC3) The cell modules are the A-Hk-bimodule

∆(k) = CGrSI(Fn
q ,Fk

q )

and the Hk-A-bimodule
∇(k) = CGrIS(Fk

q ,Fn
q ).

The isomorphism
A≤k/A<k ∼= ∆(k)⊗Hk

∇(k)

is straightforward from (3E.4) and (3E.5); see also the proof of Proposition 4.33 in [SS22].
In summary, the sandwich cellular structure for endomorphism algebras in Rep(GLt(Fq)) looks as follows:

Rep
(
GLt(Fq)

)
:

T SI subspaces GrSI0 (Fk
q ,Fn

q ),

m the group algebra C[GLk(Fq)],

B IS subspaces GrIS0 (Fn
q ,Fk

q ).

Another interpretation of the sandwich cellular structure will be explained in Subsection 3E.4 below, in terms
of the diagrammatic presentation of Rep(GLt(Fq)) from [EAH22].

3E.3. Counting direct summands. From now on, we assume that q is odd, and that t ∈ C \ {qk | k ∈ Z≥0}, so
that the category Rep(GLt(Fq)) is semisimple by Theorem 8.8 and Example 4 in Section 8 of [Kno07]. As
before, we consider the sequence

bn = #indecomposable summands in 1⊗n counted with multiplicities.

By Lemma 2.2 and the discussion in Subsection 3E.2, we have

bn =
∑
k≤n

(
#B(k) ·

∑
χ

χ(1)
)
,

where B(k) = GrIS0 (Fn
q ,Fk

q ) and χ runs over the irreducible characters of GLk(Fq). Therefore, in order to
explicitly determine bn, we need to

(a) compute the sum cd(k) =
∑

χ χ(1) of the degrees of the irreducible characters of GLk(Fq);

(b) count the number of elements in GrIS0 (Fn
q ,Fk

q )
∼= GrIS(Fn

q ,Fk
q ) /GLk(Fq).

Since we assume that q is odd, cd(k) equals the number of symmetric matrices in GLk(Fq) by Theorem 3
in [Gow83], and so by Theorem 2 in [Mac69], we have

cd(k) = #symmetric matrices in GLk(Fq) = q(
k+1
2 ) ·

∏
1≤i≤k
i odd

(1− 1
qi ).

Next for k ≤ ℓ ≤ n, let us write Matℓ(n × ℓ,Fq) and Matk(k × ℓ,Fq) for the sets of n × ℓ matrices of rank
ℓ and of k × ℓ matrices of rank k, respectively, with entries in Fq. Observe that for every pair of matrices
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M ∈ Matk(k × ℓ,Fq) and N ∈ Matℓ(n× ℓ,Fq), we have G(M) ◦G(N)∗ ∈ GrIS(Fn
q ,Fk

q ). Writing GrISℓ (Fn
q ,Fk

q )

for the set of subspaces V ∈ GrIS(Fn
q ,Fk

q ) with dimFq
V = ℓ, this gives rise to a bijection(

Matk(k × ℓ,Fq)×Matℓ(n× ℓ,Fq)
) /

GLℓ(Fq)
1:1−−−→ GrISℓ (Fn

q ,Fk
q ),

where GLℓ(Fq) acts freely on Matk(k× ℓ,Fq)×Matℓ(n× ℓ,Fq) via (g,M,N) 7→ (Mg−1, Ng−1). Note that this
bijection is GLk(Fq)-equivariant, where the action of GLk(Fq) on the left hand side is induced by the canonical
action of GLk(Fq) on Matk(k × ℓ,Fq) by left multiplication. If we fix sets of representatives Matℓ0(n × ℓ,Fq)

for the GLℓ(Fq)-orbits in Matℓ(n× ℓ,Fq) and Matk0(k × ℓ,Fq) for the GLk(Fq)-orbits in Matk(k × ℓ,Fq) then
it is straightforward to see that we obtain a bijection

Matk0(k × ℓ,Fq)×Matℓ0(n× ℓ,Fq)
1:1−−−→ GrISℓ (Fn

q ,Fk
q ) /GLk(Fq),

which sends a pair (M,N) to the GLk(Fq)-orbit of G(M) ◦ G(N)∗. (Later on, our preferred choice of orbit
representatives Matℓ0(n × ℓ,Fq) will be the set of n × ℓ matrices of rank ℓ in reduced column echelon form,
and Matk0(k × ℓ,Fq) will be the set of k × ℓ matrices of rank k in reduced row echelon form.) Observe that
Matℓ0(n × ℓ,Fq) ∼= Matℓ(n × ℓ,Fq)/GLℓ(Fq) is canonically in bijection with the set Grℓ(Fn

q ) of ℓ-dimensional
subspaces of Fn

q via N 7→ im(N) (the image of N), and Matk0(k × ℓ,Fq) ∼= Matk(k × ℓ,Fq)/GLk(Fq) is in
bijection with Grℓ−k(Fℓ

q) via M 7→ ker(M) (the kernel of M). The number of elements in Grb(Fa
q ) is given by

the (Gaussian) q-binomial coefficient

#Grb(Fa
q ) = [ ab ]q =

[a]q!

[b]q![a− b]q!
=

[a]q[a− 1]q · · · [a− b+ 1]q
[b]q[b− 1]q · · · [1]q

,

where [j]q! = [j]q[j − 1]q · · · [1]q and [j]q = qj−1
q−1 for j ∈ Z≥1, and so we obtain

#GrISℓ (Fn
q ,Fk

q ) /GLk(Fq) = [ nℓ ]q
[

ℓ
ℓ−k

]
q
= [ nℓ ]q

[
ℓ
k

]
q
, #GrIS(Fn

q ,Fk
q ) /GLk(Fq) =

∑
k≤ℓ≤n

[ nℓ ]q
[
ℓ
k

]
q
.

In conclusion, we have

bn =
∑
k≤n

#GrIS0 (Fn
q ,Fk

q ) · cd(k)

=
∑
k≤n

( ∑
k≤ℓ≤n

[ nℓ ]q
[
ℓ
k

]
q

)
· q(

k+1
2 ) ·

∏
1≤i≤k
i odd

(1− 1
qi ).

This formula can be simplified as follows.

Proposition 3E.6. For all n ≥ 0, we have

bn =
∑
k≤n

( ∑
k≤ℓ≤n

[ nℓ ]q
[
ℓ
k

]
q

)
· q(

k+1
2 ) ·

∏
1≤i≤k
i odd

(1− 1
qi ) =

n∏
k=1

(qk + 1),

Proof. First observe that for 0 ≤ k ≤ ℓ ≤ n, we have

[ nℓ ]q
[
ℓ
k

]
q
= [ nk ]q

[
n−k
ℓ−k

]
q
, q(

k+1
2 ) ·

∏
1≤i≤k
i odd

(1− 1
qi ) =

∏
1≤i≤k

qi − εi =: pk,

where εi = 0 if i is even and εi = 1 if i is odd, so we can rewrite bn as

bn =
∑

0≤k≤n

[ nk ]q ·
( ∑

k≤ℓ≤n

[
n−k
ℓ−k

]
q

)
·
∏

1≤i≤k

qi − εi =
∑

0≤k≤n

pk · [ nk ]q ·
( ∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

)
.

We prove the claim of the proposition by induction on n, using the q-Pascal identity

[ nk ]q =
[
n−1
k

]
q
+ qn−k ·

[
n−1
k−1

]
q

and starting from the observation that b0 = 1. (We have [ 00 ]q = 1 and [ ab ]q = 0 if b < 0 or b > a by convention.)
For n > 0, we compute

bn =
∑

0≤k≤n

pk · [ nk ]q ·
( ∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

)
=

( ∑
0≤k≤n−1

pk ·
([

n−1
k

]
q
+ qn−k ·

[
n−1
k−1

]
q

)
·
( ∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

))
+ pn

=

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·
(
1 +

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q
+ qn−k−ℓ ·

[
n−k−1
ℓ−1

]
q

))
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+

( ∑
0≤k≤n−1

qn−k · pk ·
[
n−1
k−1

]
q
·
( ∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

))
+ pn

=

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q

)
+

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·
( ∑

0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

))

+

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·
( ∑

0≤ℓ≤n−k−1

qn−k−ℓ ·
[
n−k−1
ℓ−1

]
q

))

+

( ∑
0≤k≤n−1

qn−k · pk ·
[
n−1
k−1

]
q
·
( ∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

))
+ pn

= bn−1 + cn−1 + dn−1 + pn,

where we set

cn−1 =

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

qn−k−ℓ ·
[
n−k−1
ℓ−1

]
q

)
+

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q

)
,

dn−1 =
∑

0≤k≤n−1

qn−k · pk ·
[
n−1
k−1

]
q
·
∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q
.

Using the fact that pk+1 = (qk+1 − εk+1) · pk, we obtain

dn−1 =
∑

0≤k≤n−1

qn−kpk ·
[
n−1
k−1

]
q
·
∑

0≤ℓ≤n−k

[
n−k
ℓ

]
q

=
∑

0≤k≤n−2

qn−k−1pk+1 ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

=
∑

0≤k≤n−2

qn−k−1 · (qk+1 − εk) · pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

= qn ·
∑

0≤k≤n−2

pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

−
∑

0≤k≤n−2

qn−k−1εkpk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

= qnbn−1 − qnpn−1 −
( ∑

0≤k≤n−1

qn−k−1εkpk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

)
+ εnpn−1

= qnbn−1 − pn −
( ∑

0≤k≤n−1

qn−k−1εkpk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

[
n−k−1

ℓ

]
q

)
,

and we further compute

cn−1 =

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

qn−k−ℓ ·
[
n−k−1
ℓ−1

]
q

)
+

( ∑
0≤k≤n−1

pk ·
[
n−1
k

]
q

)
=

∑
0≤k≤n−1

pk ·
[
n−1
k

]
q
·
∑

0≤ℓ≤n−k

qn−k−ℓ ·
[
n−k−1
ℓ−1

]
q

=
∑

0≤k≤n−1

pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

qn−k−ℓ−1 ·
[
n−k−1

ℓ

]
q
.

Thus, if we define

zn−1 := cn−1 + dn−1 − qnbn−1 + pn =
∑

0≤k≤n−1

pk ·
[
n−1
k

]
q
·

∑
0≤ℓ≤n−k−1

(
qn−k−ℓ−1 − qn−k−1εk+1

)
·
[
n−k−1

ℓ

]
q

then it follows that
bn = bn−1 + cn−1 + dn−1 + pn = (qn + 1) · bn−1 + zn−1,

and so it remains to show that zn = 0 for all n ≥ 0. For 0 ≤ k ≤ n, let

sk,n := pk · [ nk ]q ·
∑

0≤ℓ≤n−k

(
qn−k−ℓ − qn−kεk+1

)
·
[
n−k
ℓ

]
q

= pk ·
∑

0≤ℓ≤n−k

(
qℓ − qn−kεk+1

)
·
[
n−k
ℓ

]
q
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so that zn =
∑

0≤k≤n sk,n, and observe that if n is even then sn,n = 0. If k < n is even then we have

sk,n + sk+1,n =

(
pk · [ nk ]q ·

∑
0≤ℓ≤n−k

(
qℓ − qn−k

)
·
[
n−k
ℓ

]
q

)

+

(
pk+1 · [ n

k+1 ]q ·
∑

0≤ℓ≤n−k−1

qℓ ·
[
n−k−1

ℓ

]
q

)

=

(
pk ·

∑
0≤ℓ≤n−k

qℓ ·
(
1− qn−k−ℓ

)
· [n]q !
[k]q ![ℓ]q ![n−k−ℓ]q !

)

+

(
pk ·

∑
0≤ℓ≤n−k−1

qℓ ·
(
qk+1 − 1

)
· [n]q !
[k+1]q ![ℓ]q ![n−k−ℓ−1]q !

)
= pk · qn−k · (1− q0) · [n]q !

[k]q ![ℓ]q !
= 0.

We conclude that zn =
∑

0≤k≤n sk,n = 0 for all n ≥ 0, hence bn = (qn + 1) · bn−1 for all n > 0, and by
induction, it follows that bn =

∏n
k=1(q

k + 1), as claimed. □

If we set

c = lim
n→∞

n∏
k=1

(1 + 1
qk
) = 1

2QPochhammer(−1, 1/q)∞

(the q-Pochhammer symbol) then Proposition 3E.6 implies that

bn ∼ c · q
n(n+1)

2 , n
√

bn ∼ q
n+1
2 ,

and this establishes the claim in (1.1).

3E.4. Diagrammatic interpretation. The category Rep(GLt(Fq)) admits a diagrammatic description, which we
recall below, following Subsection 5.2 in [EAH22]. Namely, Rep(GLt(Fq)) is generated by the object 1 = •
and by the following homomorphisms.

merge: , split: , unit: , counit: , crossing: σ = ,

addition: + , zero: , scalar multiplication: µa = a for a ∈ Fq

The relations are defined precisely so as to make Rep(GLt(Fq)) the universal rigid symmetric monoidal category
generated by an Fq-linear Frobenius space (i.e. a Frobenius algebra object with a compatible Fq-module
structure); c.f. Definition 5.1.1 in [EAH22]. In particular, the merge and addition homomorphisms satisfy
the usual associativity relations and the split homomorphism satisfies coassociativity, so that we can define
iterated merge, split and addition homomorphisms. These will be denoted by the following diagrams:

· · ·
· · ·

· · ·
+

The evaluation and coevaluation for the generating object 1 = • are given by

:= and := ,

and we introduce the additional notations

dual addition: + = + , dual zero: =

Using the relations (DLin3) and (DRel1) in [EAH22], it is straightforward to see that for a ∈ F×
q , the dual of

µa is given by

µ∗
a = a = a−1 = µa−1 ,

and again using (DLin3), we have

µ0 = 0 = , µ∗
0 = 0 =

Thus, the dual of a homomorphism in Rep(GLt(Fq)), represented by a diagram, can be computed by
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• replacing all occurences of µ0 by ,
• replacing all occurences of µa by µa−1 for a ∈ F×

q ,
• turning the diagram upside down.

For every row vector r = (a1, . . . , an) with entries in Fq, the homomorphism G(r) : n → 1 defined in Remark
3E.2 corresponds to the diagram

(3E.7)
· · ·
r :=

a1 a2 · · · an

+

Furthermore, for an m × n matrix A with rows r1, . . . , rm, the homomorphism G(A) : n → m is represented
by the diagram

(3E.8)
· · ·

· · ·
A

:=

· · ·
· · · · · · · · ·
r1 r2 · · · rm

With these notations in place, we can now translate the sandwich cellular structure defined in Subsection
3E.2 into diagrammatics. Recall that we write GrIS(Fn

q ,Fk
q ) for the set of injective-surjective subspaces of

Fn
q ⊕ Fk

q and GrIS0 (Fn
q ,Fk

q ) for the set of GLk(Fq) orbits in GrIS(Fn
q ,Fk

q ), and similarly for surjective-injective
subspaces. Further recall that every subspace V ∈ Gr(Fm

q ,Fn
q ) can be factored uniquely as V = V2 ◦G(M)◦V1,

with V1 ∈ GrIS0 (Fm
q ,Fk

q ), V2 ∈ GrSI0 (Fk
q ,Fn

q ) and M ∈ GLk(Fq), for some k ≤ min{m,n}. Therefore, in order
define bases for Hom-spaces in Rep(GLt(Fq)) consisting of diagrams in a certain “standard form”, it suffices
to diagrammatically describe the groups GLk(Fq) and the top and bottom homomorphisms corresponding to
GrIS0 (Fm

q ,Fqk) and GrSI0 (Fk
q ,Fn

q ), respectively.
The diagrammatic description of the the groups GLk(Fq) is straightforward, using the observation that

GLk(Fq) is generated by elementary matrices (i.e. elementary row or column operations). Accordingly, we
call a GL∗(Fq)-diagram any diagram in Rep(GLt(Fq)) that is locally generated by the scalar multiplication
diagrams µa, for a ∈ F×

q , along with the elementary matrix diagrams

λa := ( 1 a
0 1 ) = a

+
ρa := ( 1 0

a 1 ) = a
+

for a ∈ Fq. Alternatively, a GL∗(Fq)-diagram is locally generated by the scalar multiplication diagrams µa

(for a ∈ F×
q ), along with the elementary matrix diagrams λb (for b ∈ Fq) and the crossing

σ = = ( 0 1
1 0 ) .

Indeed, the equivalence of the generating sets is a consequence of the relations

ρb = a
+

= σ ◦ λb ◦ σ, σ =

+

+

+ -1

-1 = (id1 ⊗ µ−1) ◦ λ1 ◦ ρ−1 ◦ λ1,

which in turn follow from the matrix equations

( 1 0
b 1 ) = ( 0 1

1 0 ) (
1 b
0 1 ) (

0 1
1 0 ) , ( 0 1

1 0 ) =
(
1 0
0 −1

)
( 1 1
0 1 )

(
1 0
−1 1

)
( 1 1
0 1 ) ,

cf. Proposition 6.2.10 in [EAH22]. A more detailed standard form for GL∗(Fq)-diagrams can be obtained
using the Bruhat decomposition for finite general linear groups, but we will not discuss the details here.

In order to diagrammatically describe the bottom (and top) homomorphisms corresponding to GrIS0 (Fm
q ,Fk

q )

(and GrSI0 (Fk
q ,Fn

q )), let us write

Matℓ0(m× ℓ,Fq) =
{
m× ℓ matrices of rank ℓ in reduced column echelon form

}
,

Matk0(k × ℓ,Fq) =
{
k × ℓ matrices of rank k in reduced row echelon form

}
,

for k ≤ ℓ ≤ m. Recall from Subsection 3E.2 that there is a bijection

Matk0(k × ℓ,Fq)×Matℓ0(m× ℓ,Fq)
1:1−−−→ GrISℓ (Fm

q ,Fk
q ) /GLk(Fq),
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which sends a pair (M,N) to the GLk(Fq)-orbit of G(M) ◦ G(N)∗, so we can define a set of representatives
GrIS0 (Fm

q ,Fk
q ) for the GLk(Fq)-orbits in GrIS(Fm

q ,Fk
q ) via

GrIS0 (Fm
q ,Fk

q ) =
⊔

k≤ℓ≤n

{
G(M) ◦G(N)∗

∣∣M ∈ Matk0(k × ℓ,Fq), N ∈ Matℓ0(m× ℓ,Fq)
}
.

Then, in order to diagrammatically describe the homomorphism in Rep(GLt(Fq)) corresponding to an injective-
surjective subspace V = G(M)◦G(N)∗ ∈ GrIS0 (Fm

q ,Fk
q ), it suffices to diagrammatically describe the homomor-

phisms G(M) and G(N) corresponding to matrices of full rank in reduced row echelon form or column echelon
form, respectively. (As explained above, the diagram corresponding to G(N)∗ can be obtained essentially by
turning the diagram corresponding to G(N) upside down.) The diagrams in question were defined in (3E.8),
but in the special case of matrices in reduced row echelon form or column echelon form, they can be further
simplified, as shown in the following examples (using the notation introduced in (3E.7)).

(
1 u · v · w

1 x · y
1 z

)
7−→

+

+

+

+ u

v

w

+

+

x

y

+ z

=

(1, u, v, w) (1, x, y) (1, z)

 1 · ·
u
· 1
v w
· · 1
x y z

 7−→

+ +

x

v

u

y

w +

z

=

(u) (v, w) (x, y, z)

Any diagram of this form will be called a row echelon diagram or column echelon diagram, respectively,
and their duals will be called dual row echelon diagrams or dual column echelon diagrams. With these
conventions, the standard form for diagrammatic homomorphisms in Rep(GLt(Fq)) is as follows:

CE column echelon diagram,

DRE dual row echelon diagram,

GL GL∗(Fq)-diagram,

RE row echelon diagram

DCE dual column echelon diagram
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