


The art of conjecturing

▶ Mathematics is, at least partially, about good conjectures

▶ Computers are nowadays key for the art of conjecturing

▶ Early example The Birch–Swinnerton-Dyer conjecture was discovered by computer

▶ There are 3 stages of conjecturing

Example

The Birch–Swinnerton-Dyer conjecture was discovered on an EDSAC-II

This is an early example of conjectures via data visualization

Example

It is impressive what Graffiti and follow-ups conjectured, and a lot of it was proven, e.g.:

This is an early example of conjectures via data separation

Example

Wagner ∼2021 used reinforcement learning to disprove the above conjecture
Roughly: give points if π + δ is small ⇝ get examples ⇝
disprove conjecture by generalizing observed patterns

This is an example of conjectures via (counter)example generation

Crucial

For this to work we need a lot of data; and we are lucky:

Ernst–Sumners ∼1987 The number of knots grows at least exponential

KL polynomials are indexed by pairs of partitions ⇝ (n!)2 or n! (fix one to be trivial)
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The art of conjecturing

▶ Stage 1 Computer assisted conjectures

▶ Conjectures are often born from calculations, e.g. from by hand calculated prime tables

▶ Since ∼1950 computers have successively replaced by hand calculations and
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The art of conjecturing

▶ Stage 3 Automated conjecturing

▶ Graffiti (a program that knows certain graphs and graph properties, ∼1985)
creates conjectures by data search , trying to match graph+property

▶ Bait-and-catch No human input at all, but the setting is very restricted and

almost all conjectures are rather boring
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The art of conjecturing

▶ Stage 2 AI assisted conjecturing

▶ Machine learning has tools that can effectively detect patterns in data
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The art of conjecturing

The Jones

polynomial
:

▶ Today Explain how stages 1+3 can be applied in quantum topology/ algebra

▶ Example 1 Knot invariants à la Jones (D lotko–Gurnari–Sazdanovic ∼2021, Zhang ∼2024)

▶ Example 2 Kazhdan–Lusztig (KL) polynomials for Sn (Lacabanne–Vaz ∼2024)

Example
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Big data and knots

mirror←−−→
same?

▶ Problem Deciding whether two knot projections are the same knot is difficult

▶ Task Find an invariant. Sounds easy? Well, most knot invariants are pretty

bad...so: find a ‘good’ knot invariant

▶ Task Find a way to decide how good a knot invariant is

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and knots

▶ Kyoto 1990 Jones receives the fields medal (with Faddeev in the background)

▶ Quote “Jones discovered an astonishing relationship between von Neumann

algebras and geometric topology. As a result, they found a new polynomial
invariant for knots and links in 3-space.”

▶ Today The focus is on the quantum knot invariants à la Jones
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Big data and knots

▶ First measure Put all (prime) knots in a bag, grab one randomly, how likely

distinguishes, say, J the knot (from all others)?
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Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove

Big data approaches to representation theory Or: How to waste 1/4 century November 2024 π / 5



Big data and knots

▶ First measure Put all (prime) knots in a bag, grab one randomly, how likely

distinguishes, say, J the knot (from all others)?

▶ More formally What is

limn→∞ #(different J with ≤ n crossings)/#(knots with ≤ n crossings)?

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove

Big data approaches to representation theory Or: How to waste 1/4 century November 2024 π / 5



Big data and knots

▶ 1/4 century wasted!? They all distinguish knots with probability zero

▶ Data visualization gives us this conjecture
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Big data and knots - TDA

▶ TDA (topological data analysis) is the art of finding the shape of data

▶ Question What shape are quantum knot invariants?

▶ Question Can the shape measure how good they are?
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Big data and knots - TDA

▶ (Ball) Mapper = a way to turn point clouds into a graph

▶ Coloring gives additional information

▶ We see this in examples momentarily
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Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove

Big data approaches to representation theory Or: How to waste 1/4 century November 2024 π / 5



Big data and knots - TDA

▶ Now live Ball mapper on knot data

▶ Play here https://dioscuri-tda.org/BallMapperKnots.html

https://dustbringer.github.io/web–knot-invariant-comparison/

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove

Big data approaches to representation theory Or: How to waste 1/4 century November 2024 π / 5



Big data and knots - TDA

▶ Now live Ball mapper on knot data

▶ Play here https://dioscuri-tda.org/BallMapperKnots.html

https://dustbringer.github.io/web–knot-invariant-comparison/

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove

Big data approaches to representation theory Or: How to waste 1/4 century November 2024 π / 5



Big data and KL polynomials

▶ KL polynomials Pu,w (for u,w ∈ Sn = Aut{1, ..., n}) = graded base change

between Verma and simple modules of sln−1(C)

▶ The only facts you need to know for today

▶ People like them (I have spend 1/4 of a century studying them)

▶ They are of the form 1 + N[q]
▶ Verma ∼67 Every KL polynomial is trivial

▶ Polo ∼99 Every polynomial in 1 + N[q] is a KL polynomial

Turns out that both,
Verma and Polo, are ‘wrong’ ,

Verma is ‘wrong’

If we illustrate the KL polynomials for q = 1
as a n!-by-n! matrix, we get:

sl2 and sl3 - so far so good - but:

Verma is ‘wrong’ because of a small number coincidence

Theorem (from data visualization) Density bounded between Ω(0.708n) and O(n−2)

Polo is ‘wrong’

If we illustrate the roots of the KL polynomials for S10, we get:

In an equal distribution one would expect a different, more later, pattern

Polo is ‘wrong’ because not all polynomial appear equally likely – far from so!

From now
on P1,w

This theorem was discovered by example generation

It works as follows: take the permutation w l
k ∈ Sk+l as below

These are w 1
6 , w

2
6 , w

3
4

Continue

Then P1,w l
k
= (1 + q + ... + ql)k−1 (*)

These are the multinomial coefficients ⇒ done

To show star, use that (1 + q + ... + ql)k−1

corresponds to the cohomology ring of (CPl)×k−1)

CP1 :

The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal

Among the non bimodal KL polynomials almost all are trimodal etc.

Conjecture via data visualization

The ball mapper on random
polynomials is a

random graph

This is very different from the KL ball mapper graph
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From now
on P1,w

This theorem was discovered by example generation

It works as follows: take the permutation w l
k ∈ Sk+l as below

These are w 1
6 , w

2
6 , w

3
4

Continue

Then P1,w l
k
= (1 + q + ... + ql)k−1 (*)

These are the multinomial coefficients ⇒ done

To show star, use that (1 + q + ... + ql)k−1

corresponds to the cohomology ring of (CPl)×k−1)

CP1 :

The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal

Among the non bimodal KL polynomials almost all are trimodal etc.

Conjecture via data visualization

The ball mapper on random
polynomials is a

random graph

This is very different from the KL ball mapper graph
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Big data and KL polynomials - TDA
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Big data and KL polynomials - TDA
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The art of conjecturing

▶ Mathematics is, at least partially, about good conjectures

▶ Computers are nowadays key for the art of conjecturing

▶ Early example The Birch–Swinnerton-Dyer conjecture was discovered by computer

▶ There are 3 stages of conjecturing

Example

The Birch–Swinnerton-Dyer conjecture was discovered on an EDSAC-II

This is an early example of conjectures via data visualization

Example

It is impressive what Graffiti and follow-ups conjectured, and a lot of it was proven, e.g.:

This is an early example of conjectures via data separation

Example

Wagner ∼2021 used reinforcement learning to disprove the above conjecture
Roughly: give points if π + δ is small ⇝ get examples ⇝
disprove conjecture by generalizing observed patterns

This is an example of conjectures via (counter)example generation

Crucial

For this to work we need a lot of data; and we are lucky:

Ernst–Sumners ∼1987 The number of knots grows at least exponential

KL polynomials are indexed by pairs of partitions ⇝ (n!)2 or n! (fix one to be trivial)
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The art of conjecturing

The Jones

polynomial
:

▶ Today Explain how stages 1+3 can be applied in quantum topology/ algebra

▶ Example 1 Knot invariants à la Jones (D lotko–Gurnari–Sazdanovic ∼2021, Zhang ∼2024)

▶ Example 2 Kazhdan–Lusztig (KL) polynomials for Sn (Lacabanne–Vaz ∼2024)
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Big data and knots

▶ First measure Put all (prime) knots in a bag, grab one randomly, how likely

distinguishes, say, J the knot (from all others)?

▶ More formally What is

limn→∞ #(different J with ≤ n crossings)/#(knots with ≤ n crossings)?

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and knots

▶ 1/4 century wasted!? They all distinguish knots with probability zero

▶ Data visualization gives us this conjecture
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but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov
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Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and knots - TDA

▶ Now live Ball mapper on knot data

▶ Play here https://dioscuri-tda.org/BallMapperKnots.html

https://dustbringer.github.io/web–knot-invariant-comparison/

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and KL polynomials

▶ KL polynomials Pu,w (for u,w ∈ Sn = Aut{1, ..., n}) = graded base change

between Verma and simple modules of sln−1(C)

▶ The only facts you need to know for today

▶ People like them (I have spend 1/4 of a century studying them)

▶ They are of the form 1 + N[q]
▶ Verma ∼67 Every KL polynomial is trivial

▶ Polo ∼99 Every polynomial in 1 + N[q] is a KL polynomial

Turns out that both,
Verma and Polo, are ‘wrong’ ,

Verma is ‘wrong’

If we illustrate the KL polynomials for q = 1
as a n!-by-n! matrix, we get:

sl2 and sl3 - so far so good - but:

Verma is ‘wrong’ because of a small number coincidence

Theorem (from data visualization) Density bounded between Ω(0.708n) and O(n−2)

Polo is ‘wrong’

If we illustrate the roots of the KL polynomials for S10, we get:

In an equal distribution one would expect a different, more later, pattern

Polo is ‘wrong’ because not all polynomial appear equally likely – far from so!

From now
on P1,w

This theorem was discovered by example generation

It works as follows: take the permutation w l
k ∈ Sk+l as below

These are w 1
6 , w

2
6 , w

3
4

Continue

Then P1,w l
k
= (1 + q + ... + ql)k−1 (*)

These are the multinomial coefficients ⇒ done

To show star, use that (1 + q + ... + ql)k−1

corresponds to the cohomology ring of (CPl)×k−1)

CP1 :

The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal

Among the non bimodal KL polynomials almost all are trimodal etc.

Conjecture via data visualization

The ball mapper on random
polynomials is a

random graph

This is very different from the KL ball mapper graph
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Big data and KL polynomials

▶ Above The maximal coefficients of KL polynomials by rank (rank n↭ Sn+1)

▶ Theorem The coefficients of the KL polynomials grow superexponential in n
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Big data and KL polynomials - TDA

▶ Above The roots of the KL polynomials for S10

▶ Below The roots of 100000 randomly generated polynomials in 1 + N[q]
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I have however no idea how to guess a generalization without a big data approach
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There is still much to do...

Thanks for your attention!
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The art of conjecturing

▶ Mathematics is, at least partially, about good conjectures

▶ Computers are nowadays key for the art of conjecturing

▶ Early example The Birch–Swinnerton-Dyer conjecture was discovered by computer

▶ There are 3 stages of conjecturing

Example

The Birch–Swinnerton-Dyer conjecture was discovered on an EDSAC-II

This is an early example of conjectures via data visualization

Example

It is impressive what Graffiti and follow-ups conjectured, and a lot of it was proven, e.g.:

This is an early example of conjectures via data separation

Example

Wagner ∼2021 used reinforcement learning to disprove the above conjecture
Roughly: give points if π + δ is small ⇝ get examples ⇝
disprove conjecture by generalizing observed patterns

This is an example of conjectures via (counter)example generation

Crucial

For this to work we need a lot of data; and we are lucky:

Ernst–Sumners ∼1987 The number of knots grows at least exponential

KL polynomials are indexed by pairs of partitions ⇝ (n!)2 or n! (fix one to be trivial)
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The art of conjecturing

The Jones

polynomial
:

▶ Today Explain how stages 1+3 can be applied in quantum topology/ algebra

▶ Example 1 Knot invariants à la Jones (D lotko–Gurnari–Sazdanovic ∼2021, Zhang ∼2024)

▶ Example 2 Kazhdan–Lusztig (KL) polynomials for Sn (Lacabanne–Vaz ∼2024)

Example

The Birch–Swinnerton-Dyer conjecture was discovered on an EDSAC-II

This is an early example of conjectures via data visualization

Example

It is impressive what Graffiti and follow-ups conjectured, and a lot of it was proven, e.g.:

This is an early example of conjectures via data separation
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Wagner ∼2021 used reinforcement learning to disprove the above conjecture
Roughly: give points if π + δ is small ⇝ get examples ⇝
disprove conjecture by generalizing observed patterns

This is an example of conjectures via (counter)example generation

Crucial

For this to work we need a lot of data; and we are lucky:

Ernst–Sumners ∼1987 The number of knots grows at least exponential

KL polynomials are indexed by pairs of partitions ⇝ (n!)2 or n! (fix one to be trivial)
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The art of conjecturing
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Big data and knots

▶ First measure Put all (prime) knots in a bag, grab one randomly, how likely

distinguishes, say, J the knot (from all others)?

▶ More formally What is

limn→∞ #(different J with ≤ n crossings)/#(knots with ≤ n crossings)?

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?

Even worse They all seem to have the same dropping rate

If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and knots

▶ 1/4 century wasted!? They all distinguish knots with probability zero

▶ Data visualization gives us this conjecture

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in
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how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and knots - TDA

▶ Now live Ball mapper on knot data

▶ Play here https://dioscuri-tda.org/BallMapperKnots.html

https://dustbringer.github.io/web–knot-invariant-comparison/

Example (of invariants)

Knot invariants: have the same value on isotopic knots
but might fail to distinguish them

There are more than 50 knot invariants of various types:
components, linkings, colorings, group of colorings, knot group

Alexander, Jones, Kauffman, Khovanov

You don’t need to know any of them: they all come in large data bases

Example (of quantum invariants)

Everyone loves them (I have spend 1/4 of a century studying them)
and they triggered a lot of research in

Tensor categories, quantum symmetries and mathematical physics

Question How good are these invariants (say, on prime knots)?

Small number coincidences?
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If that is true, then the additional measure

we would use is the computational complexity (in the number of crossings)

Invariant knot ∆ J Kh H

Capital O polynomial ≈ n2n−1 ≥ n2n−1 superexponential!?

Alexander ∆ is then by far the best

Some good news If we ask for measure 2:

Put all (prime) knots in a bag, grab two randomly
how likely distinguishes, say, J these two?

Data visualization gives us the conjecture

that the probability is 1 (for all of them)

The complexity questions is however still lurking

Knots form point clouds!

These are vectors in a 11d space

Data visualization

gives again many possible conjectures
and comparisons

An explanation why detecting alternating knots (but there a not many) is easy:

Most patterns that exists are probably to difficult to prove
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Big data and KL polynomials

▶ KL polynomials Pu,w (for u,w ∈ Sn = Aut{1, ..., n}) = graded base change

between Verma and simple modules of sln−1(C)

▶ The only facts you need to know for today

▶ People like them (I have spend 1/4 of a century studying them)

▶ They are of the form 1 + N[q]
▶ Verma ∼67 Every KL polynomial is trivial

▶ Polo ∼99 Every polynomial in 1 + N[q] is a KL polynomial

Turns out that both,
Verma and Polo, are ‘wrong’ ,

Verma is ‘wrong’

If we illustrate the KL polynomials for q = 1
as a n!-by-n! matrix, we get:

sl2 and sl3 - so far so good - but:

Verma is ‘wrong’ because of a small number coincidence

Theorem (from data visualization) Density bounded between Ω(0.708n) and O(n−2)

Polo is ‘wrong’

If we illustrate the roots of the KL polynomials for S10, we get:

In an equal distribution one would expect a different, more later, pattern

Polo is ‘wrong’ because not all polynomial appear equally likely – far from so!

From now
on P1,w

This theorem was discovered by example generation

It works as follows: take the permutation w l
k ∈ Sk+l as below

These are w 1
6 , w

2
6 , w

3
4

Continue

Then P1,w l
k
= (1 + q + ... + ql)k−1 (*)

These are the multinomial coefficients ⇒ done

To show star, use that (1 + q + ... + ql)k−1

corresponds to the cohomology ring of (CPl)×k−1)

CP1 :

The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal

Among the non bimodal KL polynomials almost all are trimodal etc.

Conjecture via data visualization

The ball mapper on random
polynomials is a

random graph

This is very different from the KL ball mapper graph
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Big data and KL polynomials

▶ Above The maximal coefficients of KL polynomials by rank (rank n↭ Sn+1)

▶ Theorem The coefficients of the KL polynomials grow superexponential in n

Turns out that both,
Verma and Polo, are ‘wrong’ ,

Verma is ‘wrong’

If we illustrate the KL polynomials for q = 1
as a n!-by-n! matrix, we get:

sl2 and sl3 - so far so good - but:

Verma is ‘wrong’ because of a small number coincidence

Theorem (from data visualization) Density bounded between Ω(0.708n) and O(n−2)
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The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal
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Big data and KL polynomials - TDA

▶ Above The roots of the KL polynomials for S10

▶ Below The roots of 100000 randomly generated polynomials in 1 + N[q]

Turns out that both,
Verma and Polo, are ‘wrong’ ,

Verma is ‘wrong’

If we illustrate the KL polynomials for q = 1
as a n!-by-n! matrix, we get:

sl2 and sl3 - so far so good - but:

Verma is ‘wrong’ because of a small number coincidence

Theorem (from data visualization) Density bounded between Ω(0.708n) and O(n−2)

Polo is ‘wrong’

If we illustrate the roots of the KL polynomials for S10, we get:

In an equal distribution one would expect a different, more later, pattern

Polo is ‘wrong’ because not all polynomial appear equally likely – far from so!

From now
on P1,w

This theorem was discovered by example generation

It works as follows: take the permutation w l
k ∈ Sk+l as below

These are w 1
6 , w

2
6 , w

3
4

Continue

Then P1,w l
k
= (1 + q + ... + ql)k−1 (*)

These are the multinomial coefficients ⇒ done

To show star, use that (1 + q + ... + ql)k−1

corresponds to the cohomology ring of (CPl)×k−1)

CP1 :

The case of the binomials (H∗(S2)) was known Shapiro–Shapiro–Vainshtein ∼95

I have however no idea how to guess a generalization without a big data approach

Problem These permutations (the naive generalizations)

have complicated KL polynomials

Another supporting plot (all KL polynomials for S in one go)

Conjecture (beefed up) Among the non unimodal KL polynomials almost all are bimodal

Among the non bimodal KL polynomials almost all are trimodal etc.

Conjecture via data visualization

The ball mapper on random
polynomials is a

random graph

This is very different from the KL ball mapper graph
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There is still much to do...

Thanks for your attention!
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