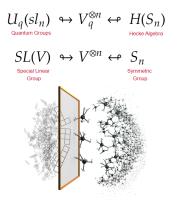
Analytic theory of monoidal categories

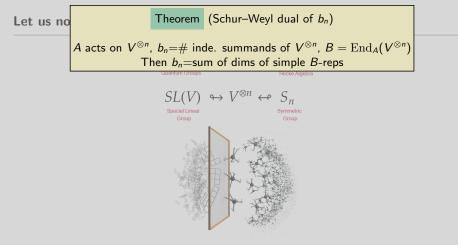
Or: Strategies to avoid counting

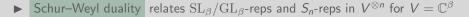
Analytic theory	of monoidal	categories
-----------------	-------------	------------



Schur–Weyl duality relates SL_{β}/GL_{β} -reps and S_n -reps in $V^{\otimes n}$ for $V = \mathbb{C}^{\beta}$

So far We have studied $b_n = \#$ inde. summands of $V^{\otimes n}$

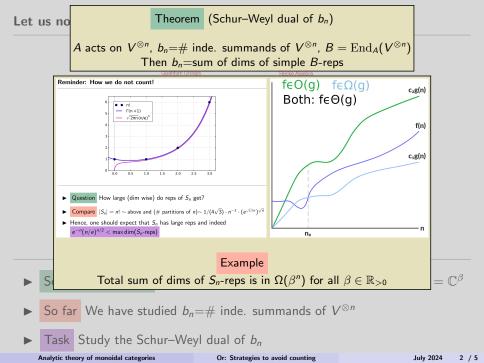


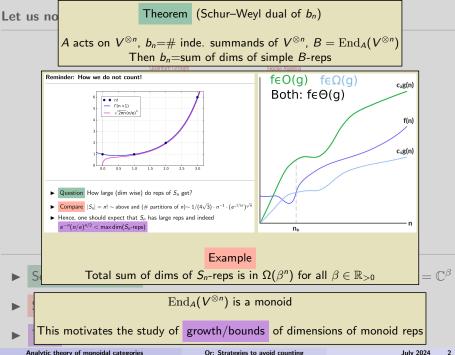


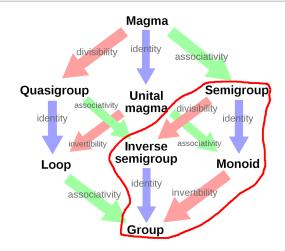
- So far We have studied $b_n = \#$ inde. summands of $V^{\otimes n}$
- ► Task Study the Schur–Weyl dual of *b_n*

Analytic theory of monoidal categories

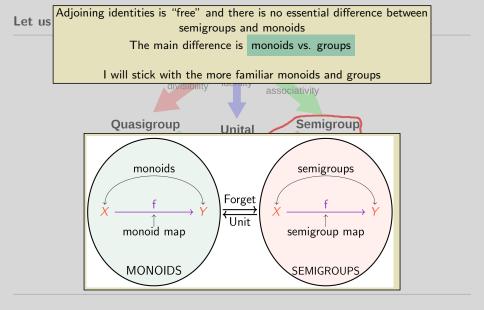
Or: Strategies to avoid counting





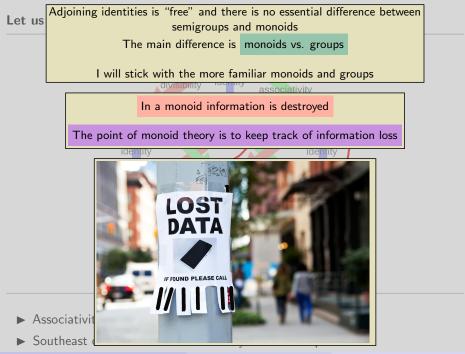


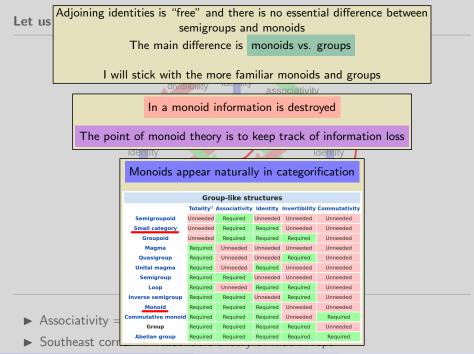
- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps



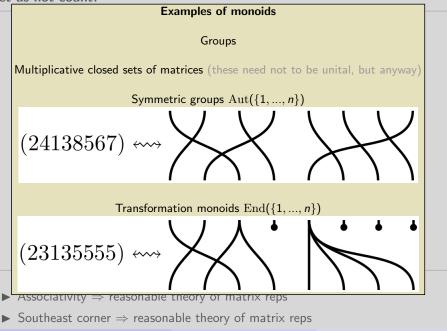
► Associativity ⇒ reasonable theory of matrix reps

• Southeast corner \Rightarrow reasonable theory of matrix reps

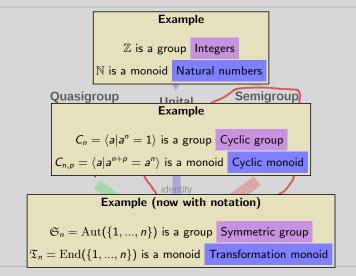




Let us not count!

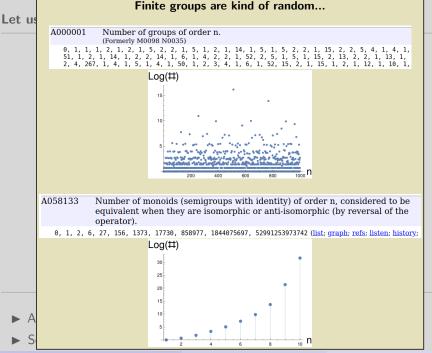


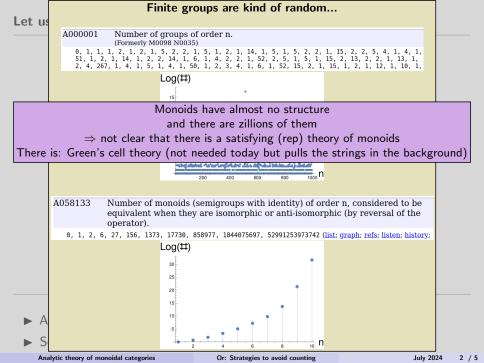
Let us not count!

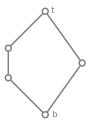


► Associativity ⇒ reasonable theory of matrix reps

▶ Southeast corner ⇒ reasonable theory of matrix reps





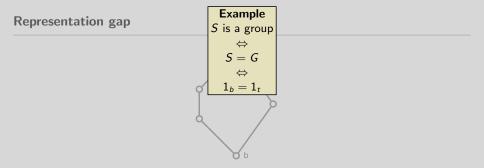


▶
$$S = \text{monoid}, G \subset S = \text{group of units}$$

 \blacktriangleright S has two trivial reps , called bottom and top:

$$1_b \colon S \to \mathbb{K}, \quad s \mapsto egin{cases} 1 & ext{if } s \in G, \\ 0 & ext{else}, \end{cases} \quad 1_t \colon S \to \mathbb{K}, \quad s \mapsto 1.$$

The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

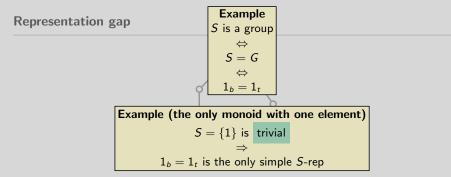


▶
$$S =$$
 monoid, $G \subset S =$ group of units

 \blacktriangleright S has two trivial reps , called bottom and top:

$$1_b \colon S \to \mathbb{K}, \quad s \mapsto \begin{cases} 1 & \text{if } s \in G, \\ 0 & \text{else}, \end{cases} \quad 1_t \colon S \to \mathbb{K}, \quad s \mapsto 1.$$

The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

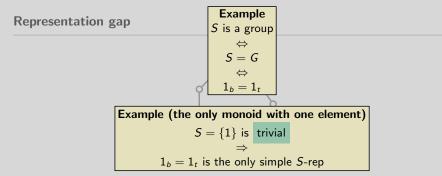


▶
$$S =$$
 monoid, $G \subset S =$ group of units

 \blacktriangleright S has two trivial reps, called bottom and top:

$$1_b \colon S \to \mathbb{K}, \quad s \mapsto egin{cases} 1 & ext{if } s \in G, \\ 0 & ext{else}, \end{cases} \quad 1_t \colon S \to \mathbb{K}, \quad s \mapsto 1.$$

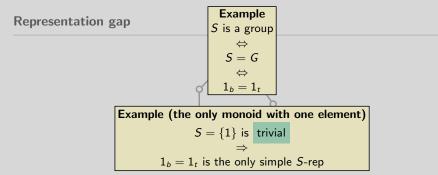
The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

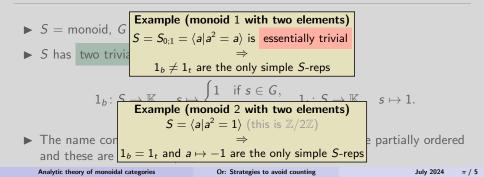


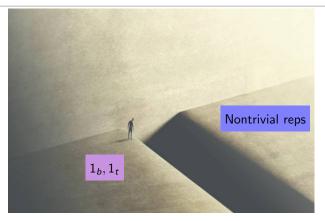
►
$$S = \text{monoid}, G$$

► $S = \text{monoid}, G$
► $S \text{ has two trivia}$
 $1_b : S \to \mathbb{K}, \quad s \mapsto \begin{cases} 1 & \text{if } s \in G, \\ 0 & \text{else}, \end{cases}$ $1_t : S \to \mathbb{K}, \quad s \mapsto 1$

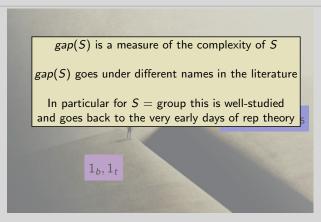
The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top







- ▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial
- ▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter

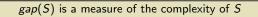


▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter

Analytic theory of monoidal categories

Or: Strategies to avoid counting



gap(S) goes under different names in the literature

In particular for S = group this is well-studied and goes back to the very early days of rep theory

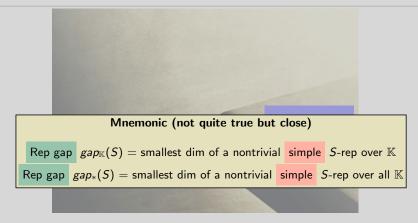
One needs lower and upper bounds for gap(S), e.g.:

A large gap(S) is what one seeks for cryptography or expander graphs

A small gap(S) is what one seeks for group/monoid cohomology

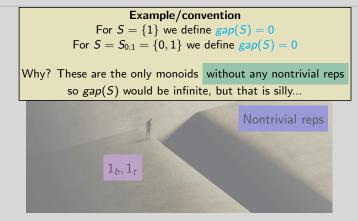
▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter



▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter



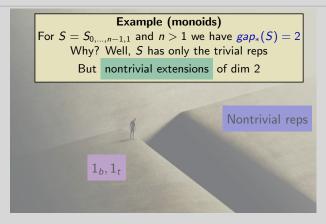
▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter

Analytic theory of monoidal categories

Or: Strategies to avoid counting



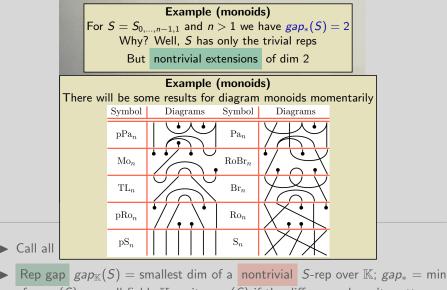


▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter

Analytic theory of monoidal categories

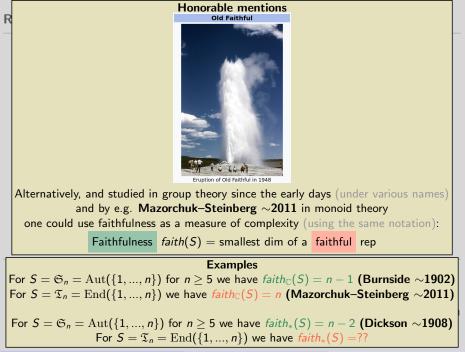
Or: Strategies to avoid counting



of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter

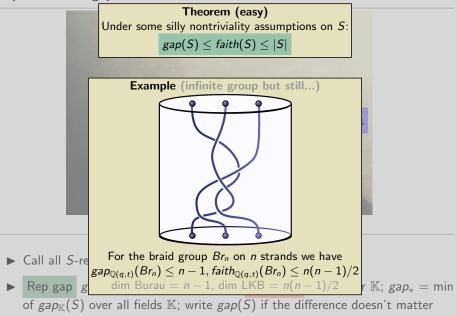
▶ Call all *S*-reps $1_t^{\oplus m} \oplus 1_b^{\oplus n}$ trivial

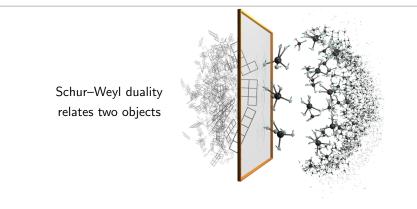
▶ Rep gap $gap_{\mathbb{K}}(S)$ = smallest dim of a nontrivial *S*-rep over \mathbb{K} ; gap_* = min of $gap_{\mathbb{K}}(S)$ over all fields \mathbb{K} ; write gap(S) if the difference doesn't matter



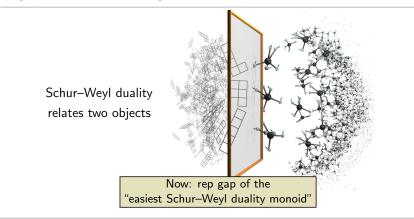
Analytic theory of monoidal categories

Or: Strategies to avoid counting



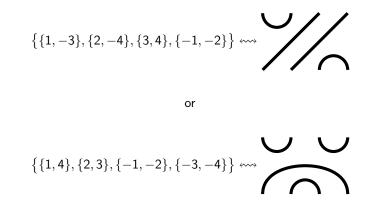


- ▶ For any monoidal category C we get a family of monoids $S_n = \text{End}_C(V^{\otimes n})$
- ▶ Schur–Weyl duality suggests that S_n should have a big rep gap
- ▶ Dim simple of S_n "⇔" # of indecomposables in $V^{\otimes n}$ and these grow fast

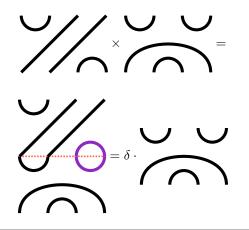


- ▶ For any monoidal category C we get a family of monoids $S_n = \text{End}_C(V^{\otimes n})$
- ▶ Schur–Weyl duality suggests that S_n should have a big rep gap
- ▶ Dim simple of S_n "⇔" # of indecomposables in $V^{\otimes n}$ and these grow fast

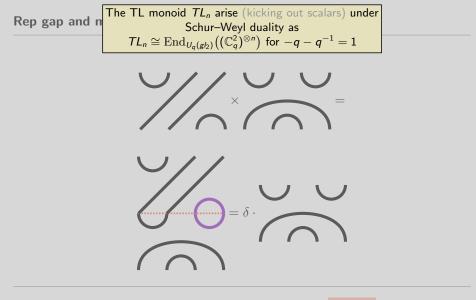
Connect 4 points at the bottom with 4 points at the top without crossings, potentially turning back:



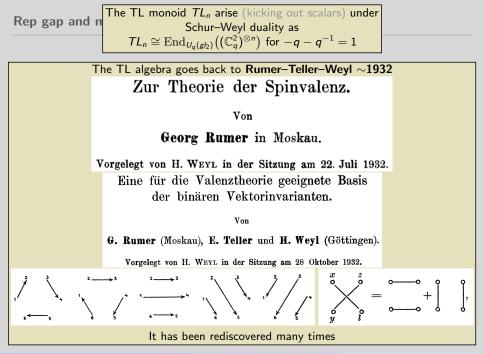
This is the Temperley–Lieb (TL) monoid TL_4 on $\{1, ..., 4\} \cup \{-1, ..., -4\}$ In combinatorics, these are crossingless perfect matchings



Fix some field \mathbb{K} and $\delta \in \mathbb{K}$, evaluate circles to $\delta \Rightarrow \mathsf{TL}$ algebra $TL_4(\delta)$ The TL monoid is the non-linear version of $TL_4(1)$

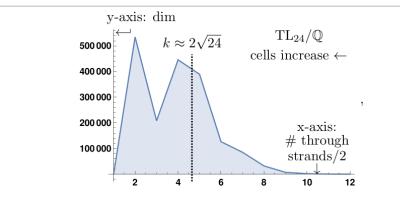


Fix some field \mathbb{K} and $\delta \in \mathbb{K}$, evaluate circles to $\delta \Rightarrow \mathsf{TL}$ algebra $TL_4(\delta)$ The TL monoid is the non-linear version of $TL_4(1)$



Analytic theory of monoidal categories

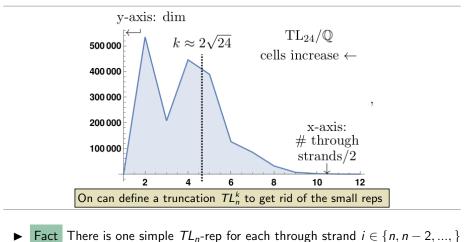
Or: Strategies to avoid counting



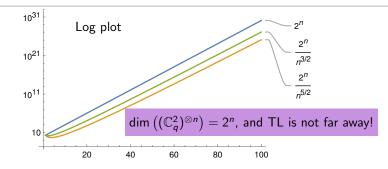
Fact There is one simple TL_n -rep for each through strand $i \in \{n, n-2, ..., \}$

► Fact The simple dims are known recursively, see e.g. Andersen ~2017, Spencer ~2020

► Fact The simple dims behave as above, see e.g. A computer ~2021



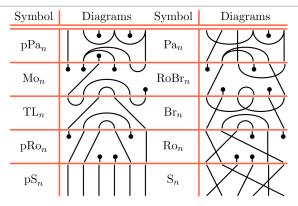
- ► Fact The simple dims are known recursively, see e.g. Andersen ~2017, Spencer ~2020
- ► Fact The simple dims behave as above, see e.g. A computer ~2021



Theorem For $0 \le k \le 2\sqrt{n}$ we have

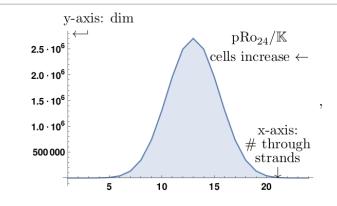
$$\operatorname{rep}_{\mathbb{Q}}(\operatorname{TL}_n^k) \geq \frac{4}{(n+2\sqrt{n}+2)(n+2\sqrt{n}+4)} \binom{n}{\frac{n}{2}-\sqrt{n}} \in \Theta(n^{-5/2} \cdot 2^n)$$

$$faith_{\mathbb{Q}}(TL_{n}^{k}) \geq \frac{6}{n+4} \binom{n}{\lfloor \frac{n}{2} - 1 \rfloor} \in \Theta(n^{-3/2} \cdot 2^{n})$$



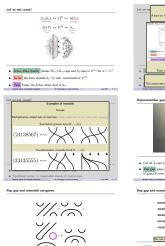
Summary

- ▶ Similar formulas hold for gap and faith but details are unknown
- ► The rep gap of monoids from monoidal categories is often large
- ▶ This is in particularly true for most of the "Schur–Weyl monoids" above



Summary

- ▶ Similar formulas hold for *gap*^{*} and *faith*^{*} but details are unknown
- ▶ The rep gap of monoids from monoidal categories is often large
- ► This is in particularly true for most of the "Schur–Weyl monoids" above



Fix some field K and $\delta \in K$, evaluate circles to $\delta \Rightarrow TL$ algebra $TL_{\delta}(\delta)$ The TL monoid is the non-linear version of TL₄(1)

Analytic theory of manufall entryption Or. Strategies to exold counting Aug 2014 X / S

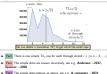
Theorem (Schur-Weyl dual of b_a) acts on $V^{\otimes n}$, $b_n = \#$ inde. summands of $V^{\otimes n}$, $B = Eod_g(V^{\otimes})$ Then b....sum of dims of simple E-reps Both: fe D(a) stal sum of dims of S_n -reps is in $\Omega(\beta^n)$ for all $\beta \in \mathbb{R}$ is motivates the study of growth/bounds of dimensions of monoid repr

► Call all S-reps 12^m ⊕ 12^m trivial

► Reg gap, (S) = smallest dim of a nontrivial S-rep over K; gap, = min of $gap_{2}(S)$ over all fields K; write gap(S) if the difference down't matter

for Strategies in solid counting 10.255 1/5

Rep gap and monoidal categories



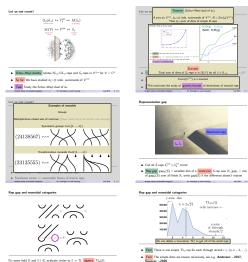
Analysis theory of recentled anogolies for Strategies to easily counting Aug 2601 A / 5

 Associativity :> reasonable theory of matrix reps Southeast corner ⇒ reasonable theory of matrix reps Analytic theory of monalitel comparise Or: Strungies to another sourcing Adjust 2/5 $gap(S) \leq falth(S) \leq |S|$ For the braid group Bry on a strands we have $g_{2}g_{2(n,r)}(B_{r_{2}}) \le n - 1$, $f_{2}(h_{2(n,r)}(B_{r_{2}}) \le n(n - 1)$

Rep gap and monoidal categories

Let us not count!

There is still much to do...



Aug 2014 X / S

Fix some field K and $\delta \in K$, evaluate circles to $\delta \Rightarrow TL$ algebra $TL_{\delta}(\delta)$ The TL monoid is the non-linear version of TL₄(1)

Analytic theory of manufall entryption Or. Strategies to exold counting

► Fact The simple dims behave as above, see e.g. A computer ~2021 Analysis theory of manufact amounts for Strategies to avail counting

Let us not count!

for Strategies in solid counting

 TL_{24}/Q

cells increase +-

X-8X83 # through

Aug 2601 A / 5

Both: fe D(a)