Analytic theory of monoidal categories

Or: Strategies to avoid counting

Let us not count!

- Γ = something that has a tensor product (more details later)
- \mathbb{K} = any ground field, V = any fin dim Γ -rep

• Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$

- \blacktriangleright Γ = something that has a tensor product (more details later)
- ▶ \mathbb{K} = any ground field, V = any fin dim Γ -rep

► Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$ Analytic theory of monoidal categories Or: Strategies to avoid counting

Analytic theory of monoidal categories

Or: Strategies to avoid counting

July 2024 2 / 5

Let us not count!

► Counting primes is difficult but...

▶ Prime number theorem (many people ~1793) #primes = $\pi(n) \sim n/\ln n$

Analytic theory of monoidal categories

Or: Strategies to avoid counting

July 2024 2 / 5

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $2 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C² (3d rep), then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C² (3d rep), then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C² (3d rep), then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

Analytic theory of monoidal categories

Or: Strategies to avoid counting

Let us not count!

We have

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Exponential growth is scary

In other words, compared to the size of the exponential growth of $(\dim_{\mathbb{K}} V)^n$ all indecomposable summands are 'essentially one-dimensional'

(dim V)"

summands->______

Analytic theory of monoidal categories

Pluto

. Class | 1 2 5 Class | 1 2 3 Size 1 3 6 8 6 Size | 1 3 2 Order | 1 2 2 3 4 Order | 1 2 3 = 2 1 1 1 4 2 $S_3: p = 2 1 1 3$ p = 3 1 2 1 $p = 3 \quad 1 \quad 2 \quad 3 \quad 1 \quad 5$, *S*₄ : X.1 X.2 + 1 1 -1 1 -1 X.1 + 1 1 1 X.3 + 2 2 0 -1 0 X.2 + 1 -1 1 X.4 + 3 -1 -1 0 1 X.3 + 2 0 - 1X.5 + 3 -1 1 0 -1

- Character table = prototypical rep theory
- Example The character tables of S_3 and S_4 created with Magma
- What do we see? Rows = simple characters, columns = conjugacy classes, size = number of elements, order = order of elements; rest (Schur indicator, power map) = not important today

e.g. $\chi_3^2 = (2, 0, -1)^2 = (4, 0, 1) = (1, 1, 1) + (1, -1, 1) + (2, 0, -1) \iff [1, 1, 1]$

- Character ring $[\operatorname{Rep}(G)]$ = elements of the form $\sum_i c_i \chi_i$ for $c_i \in \mathbb{C}$ and multiplication = multiplication of characters
- Crucial fact One can reconstruct $\operatorname{Rep}(G) = \operatorname{Rep}(G, \mathbb{C})$ from its characters

• Example [**Rep**(S_3)], $\chi_1 = unit = 1 \iff trivial rep rest above$

Class | 1 2 3 4 5 Size | 1 3 6 8 6 Order | 1 2 2 3 4 $S_4: \begin{array}{c} p = 2 & 1 & 1 & 1 & 4 & 2 \\ p = 3 & 1 & 2 & 3 & 1 & 5 \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$

• Character ring $[\operatorname{Rep}(G)]$ = elements of the form $\sum_i c_i \chi_i$ for $c_i \in \mathbb{C}$ and multiplication = multiplication of characters

• Crucial fact One can reconstruct $\operatorname{Rep}(G) = \operatorname{Rep}(G, \mathbb{C})$ from its characters

• Example [**Rep**(S_4)], $\chi_1 = unit = 1 \iff trivial rep rest above$

Analytic theory of monoidal categories

Or: Strategies to avoid counting

Analytic theory of monoidal categories

Or: Strategies to avoid counting

 $D_4: \begin{array}{c|c} & D_4: \\ D_4: \\ & P = 2 \\ & 1 \\ & 1 \\ & 2 \\ &$

• Character ring $[\operatorname{Rep}(G)]$ = elements of the form $\sum_i c_i \chi_i$ for $c_i \in \mathbb{C}$ and multiplication = multiplication of characters

• Crucial fact One can reconstruct $\operatorname{Rep}(G) = \operatorname{Rep}(G, \mathbb{C})$ from its characters

• Example [**Rep**(D_4)], $\chi_1 = unit = 1 \iff trivial rep rest above$

Or: Strategies to avoid counting

July 2024 $\pi / 5$

3 4 5 Class | 1 6 7 9 11 Size | 1 1 3 1 3 Order | 1 1 1 3 1 1 1 1 1 1 X.1 X.2 0 1 X.3 0 1 1 X.3 0 1 1 1 $(\mathbb{Z}/3\mathbb{Z})^2 \rtimes (\mathbb{Z}/3\mathbb{Z})$: 1 1 J -1-J 1 -1-J J -1-J 1 -1-J 3 -1-3 1 -1-J -1-J 0 1 1 X.5 J Л 1 1 1 1 1 1 J X.6 0 X.7 0 X.8 0 1 1 1 -1-J J X Q Θ 1 1 -1-1 1 1 1 -1-1 X.10 Θ 3*J -3-3*J X 11 -3-3*1 3*1 $J = \exp(2\pi i/3)$

Character ring $[\operatorname{Rep}(G)]$ = elements of the form $\sum_i c_i \chi_i$ for $c_i \in \mathbb{C}$ and multiplication = multiplication of characters

• Crucial fact One can reconstruct $\operatorname{Rep}(G) = \operatorname{Rep}(G, \mathbb{C})$ from its characters

• Example [Rep($(\mathbb{Z}/3\mathbb{Z})^2 \rtimes (\mathbb{Z}/3\mathbb{Z})$)], $\chi_1 = \text{unit} = 1 \iff \text{trivial rep rest above}$

Class 9 10 Size 3 3 6 8 8 6 0rder 1 2 2 2 2 2 3 4 4 6 2 3 7 = 3 2 3 5 9 2 3 4 X.1 $\mathbb{Z}/2\mathbb{Z} \times S_4$: X.2 + 1 - 1 - 1 Х.З + 1 X.4 + 1 -1 - 1 1 Χ.5 2 - 2 2 - 2 0 0 + -1 0 0 1 X.6 2 2 + 2 2 0 0 -1 0 0 -1 $X.7 \times +$ 3 3 -1 -1 1 1 0 -1 -1 0 X.8 + 3 - 3 - 1 1 -1 0 -1 0 X.9 X+ 3 - 3 - 1 1 -1 0 1 -1 0 1 X.10 + 3 3 -1 -1 -1 -1 0 1 1 0

Class 9 10 Size 3 3 8 8 6 Order | 1 2 2 2 2 2 3 4 4 6 2 3 7 = 3 2 3 4 5 9 2 3 1 X.1 $\mathbb{Z}/2\mathbb{Z} \times S_4$: X.2 + - 1 Х.З + 1 X.4 + 1 -1 - 1 1 -1 X.5 2 - 2 2 - 2 0 0 + -1 0 0 1 X.6 2 2 + 2 2 0 0 -1 0 0 -1 $X.7 \times +$ 3 3 -1 -1 1 1 0 -1 -1 0 X.8 + 3 - 3 - 1 1 -1 0 -1 0 X.9 X+ 3 - 3 - 1 1 1 -1 0 1 -1 0 X.10 + 3 3 -1 -1 -1 -1 0 1 1 0

Question What is the growth of b_n for the marked reps?
Answer

$$b_n \sim a_n = \left(\frac{20}{48} + \frac{0}{48}(-1)^n\right) \cdot n^0 \cdot 3^n$$
 $b_n \sim a_n = \frac{10}{24} \cdot n^0 \cdot 3^n$

Analytic theory of monoidal categories

Or: Strategies to avoid counting

$$a_n \sim a_n = (\frac{20}{48} + \frac{0}{48}(-1)^n) \cdot n^0 \cdot 3^n$$
 $b_n \sim a_n = \frac{10}{24} \cdot n^0 \cdot 3^n$

Analytic theory of monoidal categories

►

Or: Strategies to avoid counting

▶ $\mathbb{Z}/5\mathbb{Z}$ over $\overline{\mathbb{F}}_5$ = five indecomposables \iff five Jordan blocks

▶ **Dimensions** are 1, 2, 3, 4, 5

►
$$Z_1$$
 is simple , Z_5 is projective

▶ $\mathbb{Z}/5\mathbb{Z}$ over $\overline{\mathbb{F}}_5$ = five indecomposables \iff five Jordan blocks

Dimensions are 1, 2, 3, 4, 5

•
$$Z_1$$
 is simple, Z_5 is projective

▶ $\mathbb{Z}/5\mathbb{Z}$ over $\overline{\mathbb{F}}_5$ = five indecomposables \iff five Jordan blocks

Dimensions are 1, 2, 3, 4, 5

$$\blacktriangleright$$
 Z_1 is simple , Z_5 is projective

$$b_n \sim a_n = \frac{1}{2(\rho-1)} (1 + \frac{1}{\rho} (-1)^n) \cdot n^0 \cdot 2^n$$

Analytic theory of monoidal categories

Or: Strategies to avoid counting

 $b_n \sim a_n = \frac{1}{2(p-1)} (1 + \frac{1}{p} (-1)^n) \cdot n^0 \cdot 2^n$

• Theorem (very inclusive) For finite groups and b_n , there is essentially no difference between char 0 and char p

• Precisely
$$\mathbb{K} = \overline{\mathbb{K}}, V$$
 our rep

$$b_n \sim a_n = rac{\sum_{ ext{simples}} \dim_{\mathbb{K}} L}{|G|} (1 + xx) \cdot n^0 \cdot (\dim_{\mathbb{K}} V)^n$$

with $xx = c_1 J^n + c_2 J^{2n} + \ldots + c_h J^{hn}$ for $J = \exp(2\pi i/h)$

► There is also a version for the variance

▶ Question What is the growth of b_n for the χ₅ rep?
▶ Answer

char 0:

char 3

► Question What is the growth of b_n for the χ_5 rep? ► Answer char 0: $b_n \sim a_n = \frac{8}{24} \cdot n^0 \cdot 3^n$ char 3: $b_n \sim a_n = \frac{10}{24} \cdot n^0 \cdot 3^n$ Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 4 / 5

4 / 5

There is still much to do...

Thanks for your attention!