


Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Today

(1) Motivating examples

After today

We focus on one specific problem:

Counting summands in tensor powers

Key examples are:
(2) Finite groups

(3) SL2 + (4) dual problem
(5) General, including the Hecke category

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 2 / 6



Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Today

(1) Motivating examples

After today

We focus on one specific problem:

Counting summands in tensor powers

Key examples are:
(2) Finite groups

(3) SL2 + (4) dual problem
(5) General, including the Hecke category

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 2 / 6



Let us not count!

▶ Asymptotically equal f ∼ g if limn→∞ f (n)/g(n) → 1

▶ Logarithmic integral Li(x) =
∫ x

2
1/ ln(t)dt

▶ Question 2 What is the growth (of the number of primes) asymptotically?

▶ Answer 2 We have π(n) ∼ n/ log(n) ∼ Li(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Today

(1) Motivating examples

After today

We focus on one specific problem:

Counting summands in tensor powers

Key examples are:
(2) Finite groups

(3) SL2 + (4) dual problem
(5) General, including the Hecke category

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 2 / 6



Let us not count!

▶ Asymptotically equal f ∼ g if limn→∞ f (n)/g(n) → 1

▶ Logarithmic integral Li(x) =
∫ x

2
1/ ln(t)dt

▶ Question 2 What is the growth (of the number of primes) asymptotically?

▶ Answer 2 We have π(n) ∼ n/ log(n) ∼ Li(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Today

(1) Motivating examples

After today

We focus on one specific problem:

Counting summands in tensor powers

Key examples are:
(2) Finite groups

(3) SL2 + (4) dual problem
(5) General, including the Hecke category

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 2 / 6



Let us not count!

▶ Asymptotically equal does not imply that the difference is good

▶ |f (n)− g(n)| is a measurement of how good the approximation is

▶ Question 3 What is variance from the expected value (Li(n))?
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8πn

1/2 log n (for n ≥ 2657)
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Let us not count!

▶ Observation Precise results are often out of reach but approximate answers

are easy to get and beautiful

▶ These ideas are ubiquitous in discrete math, e.g. in number theory,

combinatorics, graph theory, ...

▶ Idea Do the same in (rep theory + category theory) = monoidal categories

Seriously, counting is difficult!
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Not counting in graph theory

▶ Prime numbers appear essentially randomly

▶ Zooming out, they mostly look like noise

▶ However, also many patterns can be observed

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)

But χ(Gn,p) ≈ n/2 log1/(1−p) n is easy to get
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Not counting in graph theory
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Not counting in graph theory

Connected/All
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▶ Fact Most graphs have many edges

▶ Random graphs are almost always connected (=almost all graphs are connected)

▶ Above # connected graphs / # all graphs

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
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Not counting in graph theory
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▶ Fact Most graphs have many edges

▶ Almost no graph is planar

▶ Above # planar graphs / # all graphs

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
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Not counting in graph theory
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▶ Fact Most graphs have many edges

▶ Almost all/no graph is Hamiltonian/Eulerian

▶ Above # connected Hamil resp. Euler / # all graphs

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)

But χ(Gn,p) ≈ n/2 log1/(1−p) n is easy to get
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Not counting in graph theory

▶ Aut(G ) = group of automorphisms of a graph

▶ Graph automorphisms keep adjacency so random appearing edges are tricky

▶ Theorem Almost all graphs have trivial automorphism group

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)

But χ(Gn,p) ≈ n/2 log1/(1−p) n is easy to get
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Not counting in graph theory
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▶ Above The diameters of 10000 random coin flip graphs with 50 vertices

▶ Note the clustering

▶ Easy Almost all Gn,p have d(Gn,p) = 2 (here and later 0 < p ≤ 1)

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)

But χ(Gn,p) ≈ n/2 log1/(1−p) n is easy to get
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Not counting in graph theory
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▶ Above Clique number cl of 10000 G50,1/2

▶ There seems to be a peak at one value

▶ Indeed, the clique number satisfies cl(Gn,p) ≈ 2 log1/p(n)

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)
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Not counting in graph theory
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▶ Above χ of 250 G50,1/2

▶ There seems to be a concentration around one or two values ≈ n/2 log2(n)

▶ Easy The coloring number χ satisfies χ(Gn,p) ≈ n/2 log1/(1−p)(n)
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Not counting in algebra

gnu(n) :

▶ gnu(n) = number of groups of order n

▶ Example gnu(prime) = 1, but getting other values is very hard

▶ Surprise One can prove nontrivial facts about gnu(n)

Theorem

Sims ∼1964 For a prime we have gnu(pn) ∼ p2n3/27+O(n8/3)

Reminder on capital O notationTheorem

Kruse–Price ∼1970, Blackburn–McLean ∼2021

For a prime we have ‘isoclasses of rings of size’(pn) ∼ p4n3/27+O(n8/3)

Folklore conjecture

Almost all groups are of order 2n

Theorem

Knopfmacher ∼1972 The average number of semisimple rings is∏
rm2>1 ζ(rm

2) ≈ 2.49961611

Semisimple = matrix rings

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 4 / 6



Not counting in algebra

▶ Pattern in a sea of randomness The 11758615 groups of order <1000 are

swamped by the 10494213 of order 512

▶ However determining gnu(n) precisely (even for prime powers) is very difficult

▶ So counting fails
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Not counting in algebra

▶ Summary

▶ The gnu function gnu(n) = number of different groups of size n

▶ Problem We know next to nothing about gnu(n), but the ‘growth’ is fast
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Reminder on capital O notationTheorem

Kruse–Price ∼1970, Blackburn–McLean ∼2021
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Folklore conjecture

Almost all groups are of order 2n

Theorem

Knopfmacher ∼1972 The average number of semisimple rings is∏
rm2>1 ζ(rm

2) ≈ 2.49961611

Semisimple = matrix rings
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Not counting in algebra
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▶ Abelian groups of order n = symmetries with n commuting operations

▶ The agnu function agnu(n) = number of different abelian groups of size n

▶ Task Describe agnu(n)
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Reminder on capital O notationTheorem

Kruse–Price ∼1970, Blackburn–McLean ∼2021
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Folklore conjecture

Almost all groups are of order 2n

Theorem

Knopfmacher ∼1972 The average number of semisimple rings is∏
rm2>1 ζ(rm

2) ≈ 2.49961611
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Not counting in algebra
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▶ The average number of abelian groups of a given order is

∏
j≥2 ζ(j) ≈ 2.29485659

▶ ζ is the (Riemann) zeta function

▶ Average is in the sense of arithmetic mean : 1
n

∑n
k=1 agnu(k)
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Not counting in representation theory

S3 : ,S4 :

▶ Character table = prototypical rep theory

▶ Example The character tables of S3 and S4 created with Magma

▶ What do we see? Rows = simple characters, columns = conjugacy classes,

size = number of elements, order = order of elements; rest (Schur indicator,
power map) = not important today

Some patterns

Frobenius? ∼1900 Abelian groups are determined by their characters
(Even better: two groups with the same characters have isomorphic abelianizations)

Oyama ∼1964 Symmetric groups are determined by their characters

Many people ∼1960++ Nonabelian simple groups are determined by their characters

Problem Brauer ∼1963

Classify the groups that are determined by their characters

This is probably out of reach

Some patterns (all Etingof–Gelaki ∼2000)

All groups that are determined by their
characters are categorically rigid

All groups of order ≡ 1 or 2 or 3 mod 4 are categorically rigid

All groups of order < 64 are categorically rigid

Categorically rigid is independent of the field (as long as K = K̄)

Theorem Etingof–Gelaki, Davydov, Izumi–Kosaki ∼2000

One can classify the groups that
are determined by their representation categories

Categorification helps!

Theorem Deligne–Milne ∼1982

If you include symmetry (the ‘braiding’), then
all groups are determined by Rep(G)

This is however even more difficult to check

Analytic theory of monoidal categories Or: Strategies to avoid counting July 2024 5 / 6



Not counting in representation theory

D4 : ,Q8 :

▶ Characters do not determine finite groups

▶ First example The dihedral group D4 (eight elements) and Q8 (quaternions)

▶ Question How good is the character table?

Some patterns

Frobenius? ∼1900 Abelian groups are determined by their characters
(Even better: two groups with the same characters have isomorphic abelianizations)

Oyama ∼1964 Symmetric groups are determined by their characters

Many people ∼1960++ Nonabelian simple groups are determined by their characters

Problem Brauer ∼1963

Classify the groups that are determined by their characters

This is probably out of reach

Some patterns (all Etingof–Gelaki ∼2000)

All groups that are determined by their
characters are categorically rigid

All groups of order ≡ 1 or 2 or 3 mod 4 are categorically rigid

All groups of order < 64 are categorically rigid

Categorically rigid is independent of the field (as long as K = K̄)

Theorem Etingof–Gelaki, Davydov, Izumi–Kosaki ∼2000

One can classify the groups that
are determined by their representation categories

Categorification helps!

Theorem Deligne–Milne ∼1982

If you include symmetry (the ‘braiding’), then
all groups are determined by Rep(G)

This is however even more difficult to check
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Not counting in representation theory
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▶ Folklore conjecture Almost all group are not determined by characters

▶ Above % of groups ≤ n not determined by their characters

Some patterns

Frobenius? ∼1900 Abelian groups are determined by their characters
(Even better: two groups with the same characters have isomorphic abelianizations)

Oyama ∼1964 Symmetric groups are determined by their characters

Many people ∼1960++ Nonabelian simple groups are determined by their characters

Problem Brauer ∼1963

Classify the groups that are determined by their characters

This is probably out of reach

Some patterns (all Etingof–Gelaki ∼2000)

All groups that are determined by their
characters are categorically rigid
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Let us not count!

▶ Prime number function π(n) = # primes ≤ n

▶ Counting primes is very tricky as primes “pop up randomly”

▶ Question 1 What is the leading growth (of the number of primes)?

▶ Answer 1 There are roughly c(n) · n for sublinear correction term c(n)

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

How good is this not counting?

Riemann ∼1859 calculates “the variance”:

f is essentially the prime counting function π

Today

(1) Motivating examples

After today

We focus on one specific problem:

Counting summands in tensor powers

Key examples are:
(2) Finite groups

(3) SL2 + (4) dual problem
(5) General, including the Hecke category
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Let us not count!

▶ Asymptotically equal does not imply that the difference is good

▶ |f (n)− g(n)| is a measurement of how good the approximation is

▶ Question 3 What is variance from the expected value (Li(n))?

▶ Conjectural answer 3 We have |π(n)− Li(n)| ∈ O(n1/2 log n) or

|π(n)− Li(n)| ≤ 1
8πn

1/2 log n (for n ≥ 2657)
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Not counting in graph theory

▶ Prime numbers appear essentially randomly

▶ Zooming out, they mostly look like noise

▶ However, also many patterns can be observed

One studies random graphs Gn,p for n = |V | ≫ 0

with p=probability to connect vertices

Asymptotically many patterns arise

Example Almost all random graphs are connected

Summary

“On average” and “asymptotic” answers might be nice
even if the precise results are very difficult

Example

Finding the chromatic number χ is NP-hard
The fastest known algorithms to find colorings are ≈ in O(n · 2n)

But χ(Gn,p) ≈ n/2 log1/(1−p) n is easy to get
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▶ Fact Most graphs have many edges

▶ Almost all/no graph is Hamiltonian/Eulerian
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Not counting in algebra

▶ Pattern in a sea of randomness The 11758615 groups of order <1000 are

swamped by the 10494213 of order 512

▶ However determining gnu(n) precisely (even for prime powers) is very difficult

▶ So counting fails

Theorem

Sims ∼1964 For a prime we have gnu(pn) ∼ p2n3/27+O(n8/3)

Reminder on capital O notationTheorem

Kruse–Price ∼1970, Blackburn–McLean ∼2021

For a prime we have ‘isoclasses of rings of size’(pn) ∼ p4n3/27+O(n8/3)

Folklore conjecture

Almost all groups are of order 2n

Theorem

Knopfmacher ∼1972 The average number of semisimple rings is∏
rm2>1 ζ(rm

2) ≈ 2.49961611

Semisimple = matrix rings
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▶ The average number of abelian groups of a given order is

∏
j≥2 ζ(j) ≈ 2.29485659

▶ ζ is the (Riemann) zeta function

▶ Average is in the sense of arithmetic mean : 1
n

∑n
k=1 agnu(k)
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Not counting in representation theory

S3 : ,S4 :

▶ Character table = prototypical rep theory

▶ Example The character tables of S3 and S4 created with Magma

▶ What do we see? Rows = simple characters, columns = conjugacy classes,

size = number of elements, order = order of elements; rest (Schur indicator,
power map) = not important today

Some patterns

Frobenius? ∼1900 Abelian groups are determined by their characters
(Even better: two groups with the same characters have isomorphic abelianizations)

Oyama ∼1964 Symmetric groups are determined by their characters

Many people ∼1960++ Nonabelian simple groups are determined by their characters

Problem Brauer ∼1963

Classify the groups that are determined by their characters

This is probably out of reach

Some patterns (all Etingof–Gelaki ∼2000)

All groups that are determined by their
characters are categorically rigid

All groups of order ≡ 1 or 2 or 3 mod 4 are categorically rigid

All groups of order < 64 are categorically rigid

Categorically rigid is independent of the field (as long as K = K̄)

Theorem Etingof–Gelaki, Davydov, Izumi–Kosaki ∼2000

One can classify the groups that
are determined by their representation categories

Categorification helps!

Theorem Deligne–Milne ∼1982

If you include symmetry (the ‘braiding’), then
all groups are determined by Rep(G)

This is however even more difficult to check
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There is still much to do...

Thanks for your attention!
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▶ Example The character tables of S3 and S4 created with Magma
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Categorically rigid is independent of the field (as long as K = K̄)
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There is still much to do...

Thanks for your attention!
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