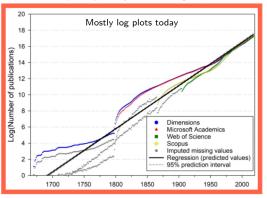
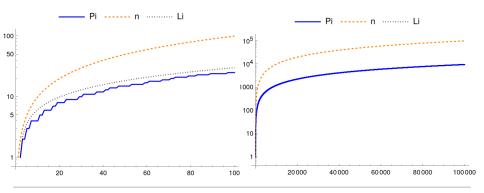
Or: Exponential growth everywhere



AcceptChange what you cannot changeaccept

I report on work of Coulembier, Etingof, Ostrik, and many more



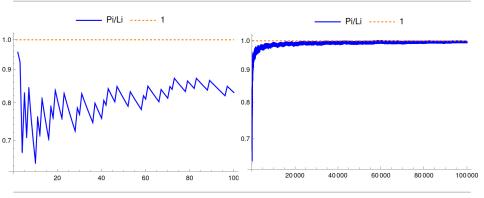
• Prime number function $\pi(n) = \#$ primes $\leq n$

Counting primes is very tricky as primes "pop up randomly"

Question 1 What is the leading growth (of the number of primes)?

• Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term c(n)

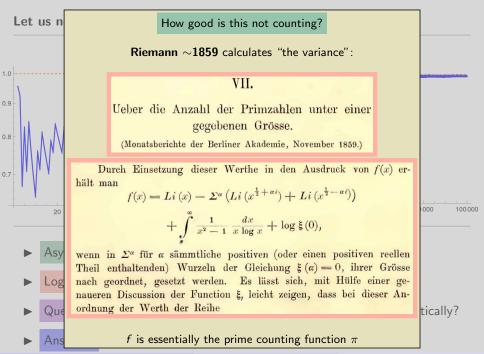
, ,	Serio	ously, count	ing is diffic	ult!		
5		Nombre γ			Nombre <i>y</i>	
	Limite x	par la formule.	par les Tables.	Limite x	par la formule.	par les Tables.
Legendre \sim 1808: (for $n/(\ln n - 1.08366))$	10000 20000 30000 40000 50000 70000 80000 90000	1 230 2268 3 252 4 205 5 1 36 6 049 6 949 7 838 87 17	1230 2263 3246 4204 5134 6058 6936 7837 8713	100000 150000 200000 250000 300000 550000 400000 Acctu	9588 13844 17982 22035 26023 29961 33854 ally, $\#prin$ =1229.	9592 13849 17984 22045 25998 29977 33861 mes<1000
Gauss, Legendre and company counted primes up to $n = 400000$ and more						
That took years (your IPhone can do that in secondshumans have advanced!)						
Question 1 What is the leading growth (of the number of primes)?						
Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term $c(n)$						
Counting in tensor products		Or: Expon	ential growth every	where		May 2024 2



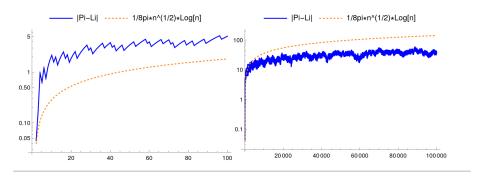
- Asymptotically equal $f \sim g$ if $\lim_{n \to \infty} f(n)/g(n) \to 1$
- Logarithmic integral $Li(x) = \int_2^x 1/\ln(t) dt$

Question 2 What is the growth (of the number of primes) asymptotically?

• Answer 2 We have
$$\pi(n) \sim n/\log(n) \sim Li(n)$$

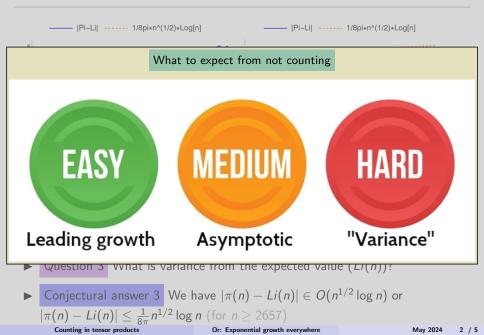


Or: Exponential growth everywhere



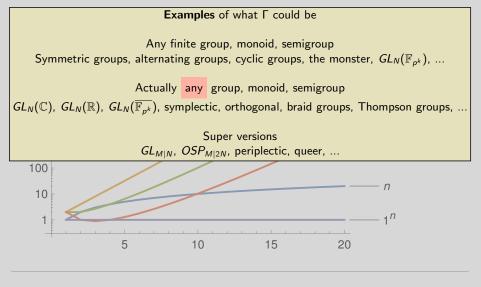
- ► Asymptotically equal does not imply that the difference is good
- ▶ |f(n) g(n)| is a measurement of how good the approximation is
- Question 3 What is variance from the expected value (Li(n))?

Conjectural answer 3 We have
$$|\pi(n) - Li(n)| \in O(n^{1/2} \log n)$$
 or
 $|\pi(n) - Li(n)| \leq \frac{1}{8\pi} n^{1/2} \log n$ (for $n \geq 2657$)
Counting in tensor products Or: Exponential growth everywhere



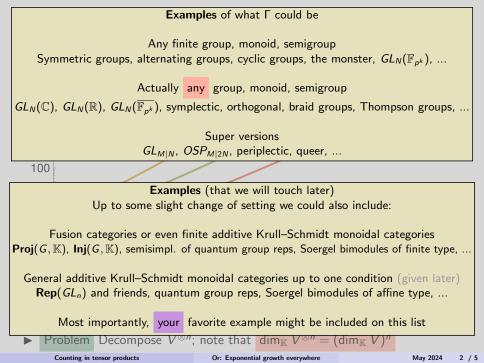
- Γ = something that has a tensor product (more details later)
- \mathbb{K} = any ground field, V = any fin dim Γ -rep

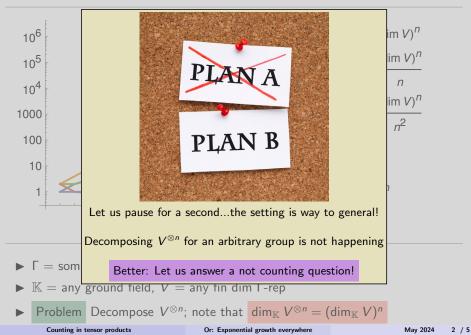
• Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$



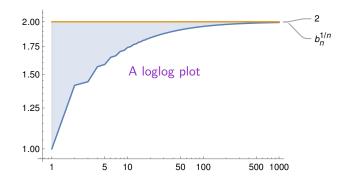
- \blacktriangleright Γ = something that has a tensor product (more details later)
- \mathbb{K} = any ground field, V = any fin dim Γ -rep

Problem Decompose $V^{\otimes n}$; note that $\dim_{\mathbb{K}} V^{\otimes n} = (\dim_{\mathbb{K}} V)^n$ Counting in tensor products





Leading growth for "groups"

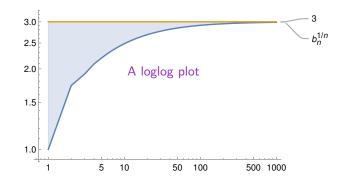


b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty}\sqrt[n]{b_n}$ seems to converge to $2 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

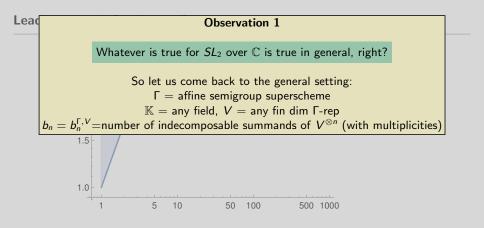
Leading growth for "groups"



b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

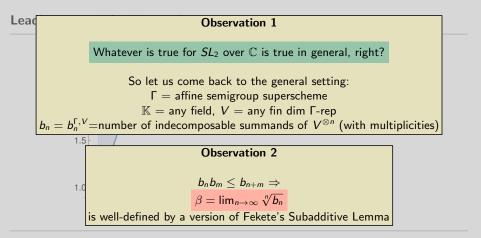
 $\lim_{n\to\infty}\sqrt[n]{b_n}$ seems to converge to 3 = dim_ $\mathbb C}$ V: $\sqrt[1000]{b_{1000}}\approx 2.9875$



b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

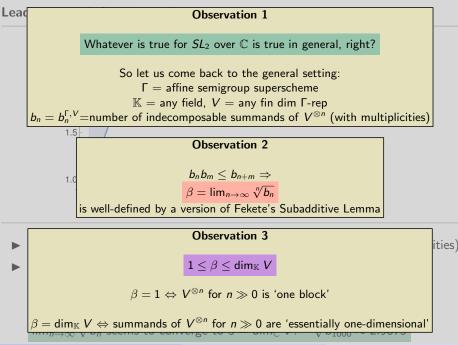
 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$



b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

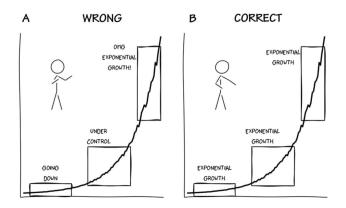
 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim_{\mathbb{C}} V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$



Or: Exponential growth everywhere

Leading growth for "groups"



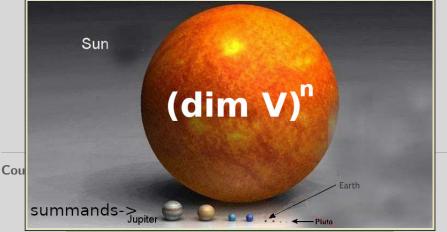
Coulembier–Ostrik \sim 2023 We have

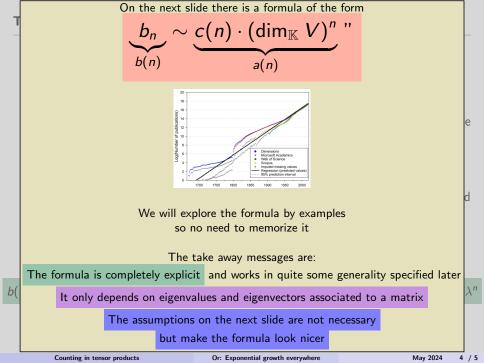
$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim_{\mathbb{K}} V$$

Exponential growth is scary

Roughly what this shows is " $b_n \sim c(n) \cdot (\dim_{\mathbb{K}} V)^n$ " for subexponential c(n)

In other words, compared to the size of the exponential growth of $(\dim_{\mathbb{K}} V)^n$ all indecomposable summands are 'essentially one-dimensional'

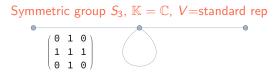




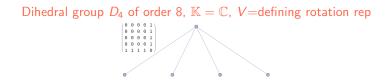
- ▶ Take a finite based $\mathbb{R}_{\geq 0}$ -algebra R with basis $C = \{c_0, ..., c_{r-1}, ...\}$
- Assume that R is the Grothendieck ring of our starting category
- For a_i ∈ ℝ_{≥0}, the action matrix M of c = a₀ · c₀ + ... + a_{r-1} · c_{r-1} ∈ R is the matrix of left multiplication of c on C
- ► Assume that *M* has a leading eigenvalue *λ* of multiplicity one; all other eigenvalues of the same absolute value are exp(k2πi/h)*λ* for some *h*
- ► Denote the right and left eigenvectors of M for λ and $\exp(k2\pi i/h)\lambda$ by v_i and w_i , normalized such that $w_i^T v_i = 1$
- ▶ Let $v_i w_i^T [1]$ denote taking the sum of the first column of the matrix $v_i w_i^T$
- The formula $b(n) \sim a(n)$ we are looking for is $(\zeta = \exp(2\pi i/h))$

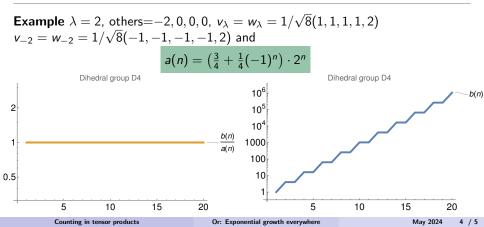
 $b(n) \sim \left(v_0 w_0^T [1] \cdot 1 + v_1 w_1^T [1] \cdot \zeta^n + v_2 w_2^T [1] \cdot (\zeta^2)^n + \ldots + v_{h-1} w_{h-1}^T [1] \cdot (\zeta^{h-1})^n \right) \cdot \lambda^n$

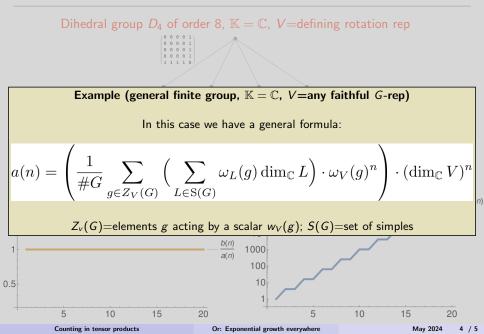
 \blacktriangleright The convergence is geometric with ratio $|\lambda^{sec}/\lambda|$

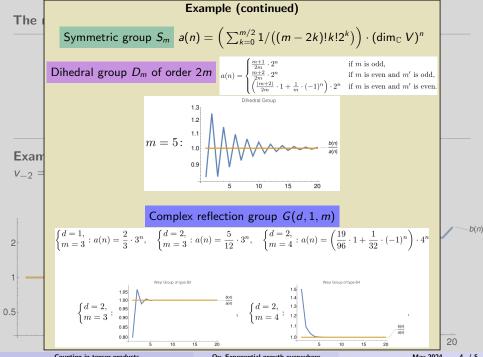


Example $\lambda = 2$, others=0, -1, $v = w = 1/\sqrt{6}(1, 2, 1)$, $vw^T = \begin{pmatrix} 1/6 & 1/3 & 1/6 \\ 1/3 & 2/3 & 1/3 \\ 1/6 & 1/3 & 1/6 \end{pmatrix}$ and $a(n) = \frac{2}{2} \cdot 2^n$ Symmetric Group S3 1.1 b(n) 1.0 a(n)0.9 0.8 5 10 15 20 Counting in tensor products Or: Exponential growth everywhere May 2024 4 / 5



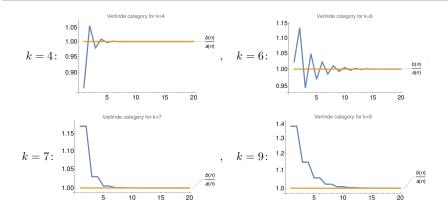






Or: Exponential growth everywhere

May 2024 / 5

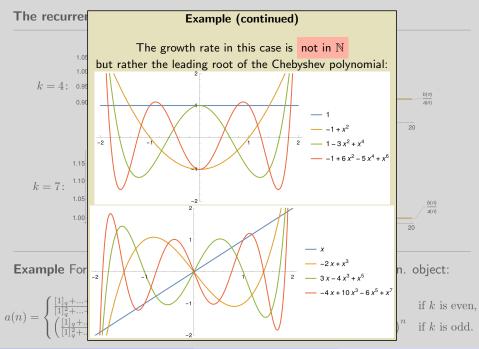


Example For the SL₂ Verlinde category over \mathbb{C} at level k and V=gen. object:

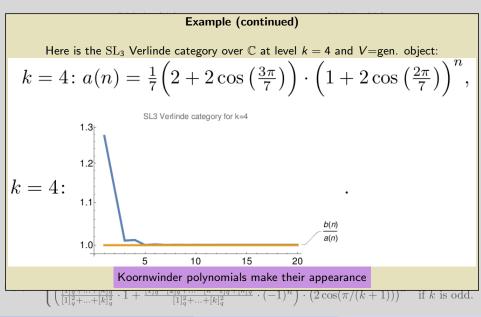
$$a(n) = \begin{cases} \frac{[1]_q + \dots + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot \left(2\cos(\pi/(k+1))\right)^n & \text{if } k \text{ is even,} \\ \left(\frac{[1]_q + \dots + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot 1 + \frac{[1]_q - [2]_q + \dots - [k-1]_q + [k]_q}{[1]_q^2 + \dots + [k]_q^2} \cdot (-1)^n \right) \cdot \left(2\cos(\pi/(k+1))\right)^n & \text{if } k \text{ is odd.} \end{cases}$$

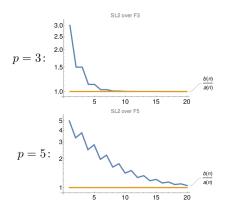
Counting in tensor products

Or: Exponential growth everywhere



May 2024 4 / 5



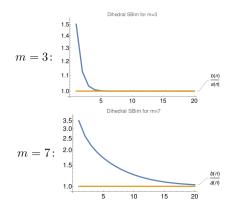


Example For $SL_2(\mathbb{F}_p)$, $\mathbb{K} = \mathbb{F}_p$ and $V = \mathbb{F}_p^2$ we get:

$$a(n) = \left(\frac{1}{2p-2} \cdot 1 + \frac{1}{2p^2 - 2p} \cdot (-1)^n\right) \cdot 2^n$$

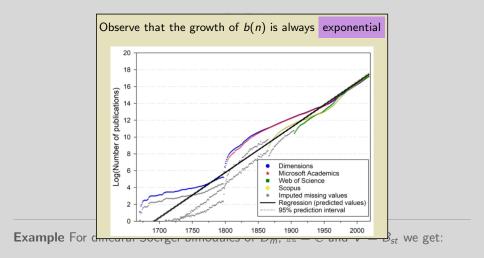
Counting in tensor products

Or: Exponential growth everywhere

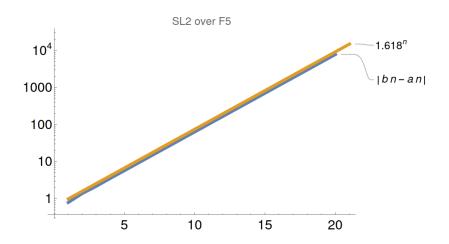


Example For dihedral Soergel bimodules of D_m , $\mathbb{K} = \mathbb{C}$ and $V = B_{st}$ we get:

$$a(n) = \frac{1}{2m} \cdot 4^n$$



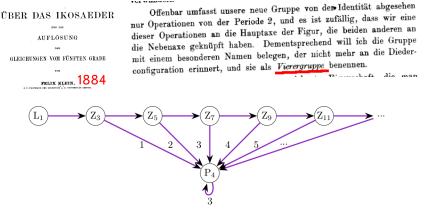
$$a(n) = \frac{1}{2m} \cdot 4^n$$



▶ The variance is given by $(\lambda_{sec})^n$ (second largest EV)

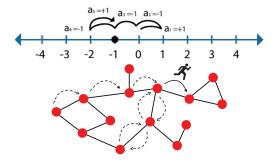
• Example Above for $SL_2(\mathbb{F}_5)$, $\mathbb{K} = \mathbb{F}_5$ and $V = \mathbb{F}_5^2$, λ_{sec} =golden ratio

VORLESUNGEN

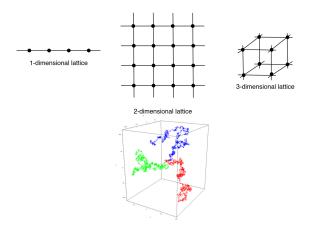


Example For the Klein four group $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, $\mathbb{K}=\overline{\mathbb{F}_2}$ and $V=Z_3=3d$ inde. we get:

$$b_n \sim 3^n$$



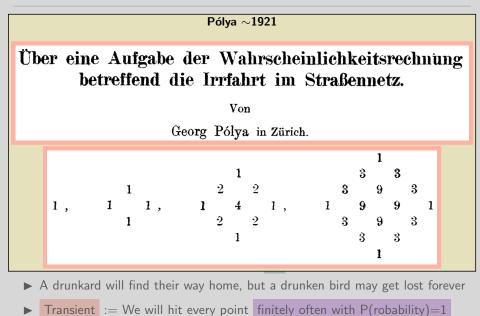
- We randomly walk on some (connected) graph = at each step choose the next step/edge randomly but equally likely "coin flip walk"
 - Question How often do we visit a vertex?
- Recurrent := We will hit every point infinitely often with P(robability)=1
- Example Every (random walk on a) finite graph is recurrent



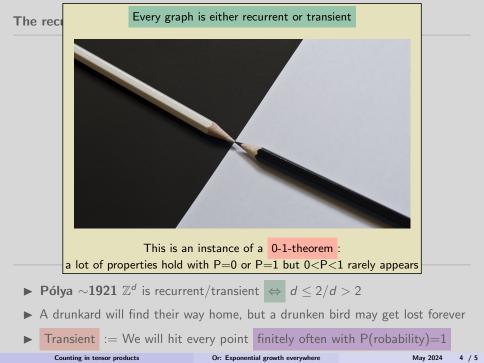
▶ Pólya ~1921 \mathbb{Z}^d is recurrent/transient $\Leftrightarrow d \le 2/d > 2$

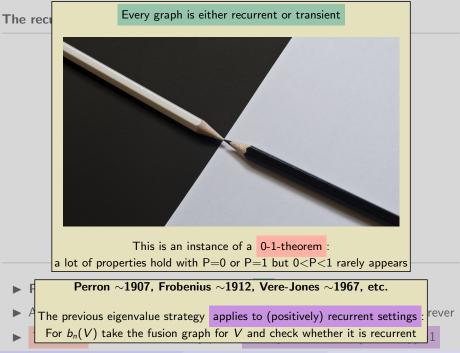
A drunkard will find their way home, but a drunken bird may get lost forever

► **Transient** := We will hit every point finitely often with P(robability)=1

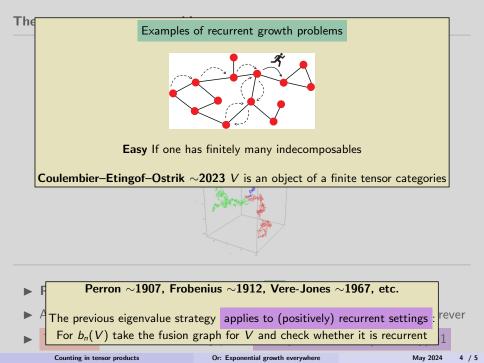


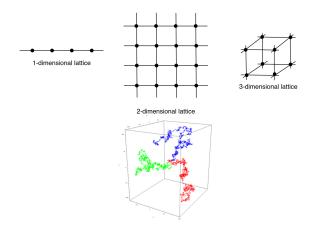
Or: Exponential growth everywhere





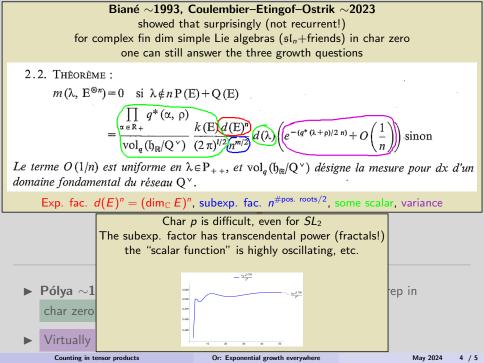
Or: Exponential growth everywhere

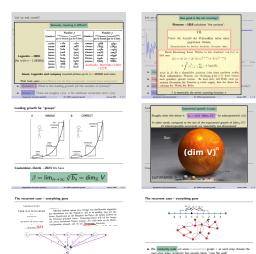




► Pólya ~1921 $b_n(V)$ for V a faithful compl. decomposable Γ -rep in char zero is recurrent $\Leftrightarrow \Gamma$ is virtually \mathbb{Z}^d for $d \in \{0, 1, 2\}$

Virtually means we allow extensions by finite groups





Among 2024 A / S

The recurrent case - everything goes

There is still much to do...

Recurrent := We will hit every point infinitely often with P(robability)=1

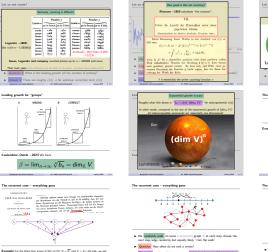
Example Every (random walk on a) finite graph is recurrent

Question How often do we visit a vertex?

Appropriate and tensor products for 10% exponential grants

Example For the Kiele four group $\mathbb{Z}/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{X} = \overline{\mathbb{P}_1}$ and $V = \mathbb{Z}_1 = 3d$ inde, we get:

 $b_{s} \sim 3^{-}$



Example Every (random walk on a) finite graph is recurrent

 Appendix of two patents
 for this separate path
 Appendix of the separate path

entre de la construcción de la c

The recurrent case - everything goes

mary Mit 1/5

Thanks for your attention!

 $b_{s} \sim 3^{-}$

Among 2024 A / S