Examples of analytic methods in tensor categories

Or: Assume *n* is very large

I report on work of Kevin Coulembier, Pavel Etingof and Victor Ostrik

April 2023

Examples of analytic methods in tensor categories

Or: Assume *n* is very large

Let us not count!

• Observation Many problems are only difficult because we like exact solutions

Bonus observation Many difficult problems are easy for large subclasses

Analytic method (Folklore ~very early) Approximate answers are often much easier to get

Let us not count!

► Counting primes is difficult but...

▶ Prime number theorem (many people ~1793) #primes = $\pi(n) \sim n/\ln n$

► Counting primes is difficult but...

• Prime number theorem (many people \sim 1793) #primes = $\pi(n) \sim n/\ln n$

► Hamiltonian cycle = a cycle that visits every vertex exactly once

Hamiltonian graph = a graph with an Hamiltonian cycle

Examples of analytic methods in tensor categories

Or: Assume n is very large

Let us not count!

(This is the traveling salesperson problem.)

Hamiltonian graph was one of the first problems shown to be NP-complete
NP-complete "=" can't do much better than brute force

▶ Dynamic programming algorithms solves this is roughly in $O(n^2 2^n)$, n = #V

Let us not count!

▶ To determine precisely whether a graph is Hamiltonian is difficult

► To determine approximately whether a graph is Hamiltonian is easy

▶ Pósa~1976 Choosing a graph randomly, the probability is 1 that the graph is Hamiltonian: $\lim_{n\to\infty} P(Hamil) = 1$ (probability)

Examples of analytic methods in tensor categories

Or: Assume *n* is very large

Let us not count!

	Clas	s	1	2	3	4	5	6	7	8	9	10
	Size	e j	1	165	440	990	1584	1320	990	990	720	720
	0rde	er j	1	2	3	4	5	6	8	8	11	11
	р =	= 2	1	1	3	2	5	3	4	4	10	9
	р =	= 3	1	2	1	4	5	2	7	8	9	10
	р =	= 5	1	2	3	4	1	6	8	7	9	10
	p =	- 11	1	2	3	4	5	6	7	8	1	1
char table of M_{11} :	X.1	+	1	1	1	1	1	1	1	1	1	1
	Χ.2	+	10	2	1	2	0	-1	0	0	-1	-1
	Х.З	0	10	- 2	1	0	0	1	Z1	-Z1	-1	-1
	Χ.4	0	10	-2	1	0	0	1	- Z1	Z1	- 1	-1
	Χ.5	+	11	3	2	-1	1	0	-1	- 1	0	0
	Χ.6	0	16	0	-2	0	1	0	0	0	Z2	Z2#2
	Χ.7	0	16	0	-2	0	1	0	0	0	Z2#2	Z2
	X.8	+	44	4	-1	0	-1	1	0	0	0	0
	Χ.9	+	45	- 3	0	1	0	0	-1	-1	1	1
	X.10) +	55	-1	1	-1	0	-1	1	1	0	0

- \blacktriangleright We now discuss finite groups G with fd reps over $\mathbb C$
- ► Burnside ~1911 Every >1d simple character has zeros
 - Question Determine where the zeros are

 $P(\chi(g) = 0) = 24/120 \approx 0.194, \quad P(\chi(C) = 0) = 4/25 = 0.16$

- **Problem** Determine for which $g \in G$ we have $\chi(g) = 0$ Too hard!
- ► Better(?) problem $P(\chi(g) = 0)$ or $P(\chi(C) = 0)$ (probability) for randomly chosen $g \in G$ or conjugacy class C

Class 9 10 11 12 13 14 15 Size Order | char table of S_7 : X.3 + X.4 X.5 X.6 X.7 X.9 + X.10 + 15 - 5 20 0 0 -4 2 X.11 + X.12 + 21 1 -3 X.13 + 21 -1 X.14 + 35 - 5 - 1 -1 -1 -1 1 X.15 +

 $P(\chi(g) = 0) = 28146/75600 \approx 0.372, \quad P(\chi(C) = 0) = 55/225 \approx 0.24$

- Problem Determine for which $g \in G$ we have $\chi(g) = 0$ Too hard!
- ▶ Better(?) problem $P(\chi(g) = 0)$ or $P(\chi(C) = 0)$ for randomly chosen $g \in G$ or conjugacy class *C*

Examples of analytic methods in tensor categories

Or: Assume n is very large

▶ Miller ~2013 Choosing S_n , $g \in S_n$ and χ simple character of S_n randomly, the probability is 1 that $\chi(g) = 0$ (formally, $\lim_{n\to\infty} P(\chi(g) = 0) = 1$)

▶ $\lim_{n\to\infty} P(\chi(C) = 0) =?$, but this is likely neither 0 nor 1 !

▶ Γ = any affine semigroup superscheme, \mathbb{K} = any ground field, V = any fin dim Γ -rep

 \blacktriangleright Γ has the notion of a tensor product

Problem Decompose $V^{\otimes n}$; note that $\dim V^{\otimes n} = (\dim V)^n$

- F = any affine semigroup superscheme, \mathbb{K} = any ground field, V = any fin dim Γ -rep
- \blacktriangleright Γ has the notion of a tensor product

• Problem Decompose $V^{\otimes n}$; note that dim $V^{\otimes n} = (\dim V)^n$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $2 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n \to \infty} \sqrt[n]{b_n}$ seems to converge to $2 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} b_n$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} b_n$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} b_n$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

Coulembier–Etingof–Ostrik \sim 2023 We have

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim V$$

Exponential growth is scary

In other words, compared to the size of the exponential growth of $(\dim V)^n$ all indecomposable summands are 'essentially one-dimensional'

summands->______

Pluto

Honorable mentions

Coulembier–Etingof–Ostrik ~2023 The same holds for any K-linear Karoubian monoidal category that is Krull-Schmidt and has a \mathbb{K} -linear faithful symmetric monoidal functor to \mathbb{K} -vector spaces Coulembier-Etingof-Ostrik ~2023 Ditto in char zero when we go to super K-vector spaces Coulembier-Etingof-Ostrik ~2022 Assume that our category has duals If one only counts summands whose dim is divisible by some fixed prime then the limit is an algebraic integer in $[1, \dim V]$ Coulembier-Etingof-Ostrik ~2023 Many more results!

Coulembier-Etingot-Ostrik ~2023 We have

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim V$$

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim V$$

► Pósa~1976 Choosing a graph randomly, the probability is 1 is Hamiltonian: lim_{m=nm} P(Hamil) = 1 (probability) is then intervent hum on the set of t

April 2005 V/S

► Counting primes is difficult but.

► Prime number theorem (many people ~1793) #prime = π(n) ∞ n/ln n heads of anyte status is user stepses.

b_n = b^{T,V}_n=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = C², then

 $\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{\alpha} \text{ for } n=0,...,10.$

 $\lim_{x\to\infty} \sqrt[4]{b_x}$ seems to converge to $2 = \dim V$: " $\sqrt[4]{b_{1000}} \approx 1.99265$

Receptor of analytic methods in tensor cotogotion. Bit: Assesser is any large April 2011. A / 5.

There is still much to do...

Let	Seriously, counting is difficult!										
	Legendre ~1505: (for s/(in s - 1.00355))	1111111	70007	A HITHI							
	Gauss, Legendre and compa	ny countr	d primes up	to n = 40	n bare 2000	ione nond?)					
	1 104 14	v8 17	12 10	6 1020	1024						
Þ	Coun discrete sta	ic numbe ic numbe	theory is f plved appn	ull of admately"	ber theory						
) () ()	Prime number theorem (many pe	ople ~17	93) #prin	$uuu = \pi(u)$	- n/ in n					

Coulembier-Etingof-Ostrik ~2023 We have

► Counting primes is difficult but.

► Prime number theorem (many people ~1793) #primes = π(n) ~ n/ln n for home to any top for the state of t

b_n = b^{T,V}_n=number of indecomposable summands of V^{⊗n} (with multiplicities)
Example Γ = SL₂, K = C, V = C², then

 $\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{\alpha} \text{ for } n=0,...,10.$

 $\lim_{n\to\infty} \sqrt[4]{b_n}$ seems to converge to $2 = \dim V$: " $\sqrt[4]{b_{1000}} \approx 1.9926$

Rampin af andyle methods in tunner rategalise. See Annee 1 is any large April 2011 8. / 5.

Coulembier-Etingof-Ostrik ~2023 We have

 $\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim V$

Thanks for your attention!