


Let us not count!

▶ Observation Many problems are only difficult because we like exact solutions

▶ Bonus observation Many difficult problems are easy for large subclasses

▶ Analytic method (Folklore ∼very early) Approximate answers are often

much easier to get

If you do not know what this means in general

you are in goodsome company: I do not know either!

We go by examples!

Example/appetizer 1 from number theory – historically the first of its kind!?

Example/appetizer 2 from graph theory – easy to understand and prototypical

Example 3 from representation theory – prototypical

Example 4 from tensor categories – finally there

∼ means asymptotically = ratios are good (not the absolute difference!)

So this is not doing the count!

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

The prime number theorem gave birth to analytic number theory

Analytic number theory is full of
“discrete statements solved approximately”

A very difficult problem might have a nice answer

if we are happy with nonexact solutions

Hamil/All

5 10 15
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0.4

0.6

0.8

1.0

The precise statement

Pósa showed that P(Hamil) → 1 for n → ∞ and graphs with cn ln n edges
This implies #HamilGraphs on ≤ n vertices / #AllGraphs on ≤ n vertices

goes to zero for n → ∞ since most graphs have ≥ c ′n2 edges

The proof of this theorem
is a not difficult counting argument

In general, graph theory

provides many statements of the form
“XYZ is very difficult, but we can solve it approximately”

A very difficult problem might have a nice answer

almost all of the time

Examples of analytic methods in tensor categories Or: Assume n is very large April 2023 2 / 5
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▶ To determine precisely whether a graph is Hamiltonian is difficult

▶ To determine approximately whether a graph is Hamiltonian is easy
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What about representation theory?

char table of M11 :

▶ We now discuss finite groups G with fd reps over C

▶ Burnside ∼1911 Every >1d simple character has zeros

▶ Question Determine where the zeros are

A problem we have seen before :

Frobenius ∼1895++ Character formulas for Sn

Hepler ∼1994 (potentially known earlier)
To determine the zeros for Sn is #P complete (=very difficult)

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 1-hour-work code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here!

Many people ∼1911++ There are many groups with the same type of behavior
and also many related statements

These tables are due to Alexander Miller

A very difficult problem might have a nice answer

almost all of the time – similarly to the Hamiltonian graph problem

Examples of analytic methods in tensor categories Or: Assume n is very large April 2023 π / 5
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What about representation theory?

char table of S4 :

P(χ(g) = 0) = 24/120 ≈ 0.194, P(χ(C ) = 0) = 4/25 = 0.16
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What about representation theory?

for up to A17 :

▶ Miller ∼2013 Choosing Sn, g ∈ Sn and χ simple character of Sn randomly,

the probability is 1 that χ(g) = 0 (formally, limn→∞ P(χ(g) = 0) = 1)

▶ limn→∞ P(χ(C ) = 0) =?, but this is likely neither 0 nor 1 !

A problem we have seen before :

Frobenius ∼1895++ Character formulas for Sn

Hepler ∼1994 (potentially known earlier)
To determine the zeros for Sn is #P complete (=very difficult)

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 1-hour-work code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38
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What about representation theory?
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A log plot – we will have log plots today

▶ Γ = any affine semigroup superscheme, K = any ground field, V = any fin dim Γ-rep

▶ Γ has the notion of a tensor product

▶ Problem Decompose V⊗n; note that dimV⊗n = (dimV )n

dimV = 1 works perfectly well

but then my story about exponential growth is flawed

so I ignore dimV = 1 and assume dimV > 1

If you do not know what an affine semigroup superscheme is

you are in goodsome company: I do not know either!

We go by examples!

Examples
Any finite group, monoid, semigroup
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Observation 3

1 ≤ β ≤ dimV

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimV ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

In other words, compared to the size of the exponential growth of (dimV )n

all indecomposable summands are ‘essentially one-dimensional’

Honorable mentions

Coulembier–Etingof–Ostrik ∼2023 The same holds for any
K-linear Karoubian monoidal category that is Krull–Schmidt

and has a K-linear faithful symmetric monoidal functor to K-vector spaces

Coulembier–Etingof–Ostrik ∼2023
Ditto in char zero when we go to super K-vector spaces

Coulembier–Etingof–Ostrik ∼2022 Assume that our category has duals
If one only counts summands whose dim is divisible by some fixed prime

then the limit is an algebraic integer in [1, dimV ]

Coulembier–Etingof–Ostrik ∼2023

Many more results!

A very difficult problem might have a nice answer

if we are happy with nonexact solutions – similarly to the prime number theorem

Examples of analytic methods in tensor categories Or: Assume n is very large April 2023 4 / 5
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b1000 ≈ 2.9875

dimV = 1 works perfectly well

but then my story about exponential growth is flawed

so I ignore dimV = 1 and assume dimV > 1

If you do not know what an affine semigroup superscheme is

you are in goodsome company: I do not know either!
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Slogan This is a very general setting

A problem we have seen before :
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for Sn and V simple (Kronecker coefficients)

Hepler ∼1994 (potentially known earlier)
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Let us not count!

▶ Observation Many problems are only difficult because we like exact solutions

▶ Bonus observation Many difficult problems are easy for large subclasses

▶ Analytic method (Folklore ∼very early) Approximate answers are often

much easier to get

If you do not know what this means in general

you are in goodsome company: I do not know either!

We go by examples!

Example/appetizer 1 from number theory – historically the first of its kind!?

Example/appetizer 2 from graph theory – easy to understand and prototypical

Example 3 from representation theory – prototypical

Example 4 from tensor categories – finally there

∼ means asymptotically = ratios are good (not the absolute difference!)

So this is not doing the count!

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

The prime number theorem gave birth to analytic number theory

Analytic number theory is full of
“discrete statements solved approximately”

A very difficult problem might have a nice answer

if we are happy with nonexact solutions

Hamil/All

5 10 15

0.2

0.4

0.6

0.8

1.0

The precise statement

Pósa showed that P(Hamil) → 1 for n → ∞ and graphs with cn ln n edges
This implies #HamilGraphs on ≤ n vertices / #AllGraphs on ≤ n vertices

goes to zero for n → ∞ since most graphs have ≥ c ′n2 edges

The proof of this theorem
is a not difficult counting argument

In general, graph theory

provides many statements of the form
“XYZ is very difficult, but we can solve it approximately”

A very difficult problem might have a nice answer

almost all of the time

Examples of analytic methods in tensor categories Or: Assume n is very large April 2023 2 / 5
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Let us not count!

▶ To determine precisely whether a graph is Hamiltonian is difficult

▶ To determine approximately whether a graph is Hamiltonian is easy

▶ Pósa∼1976 Choosing a graph randomly, the probability is 1 that the graph

is Hamiltonian: limn→∞ P(Hamil) = 1 (probability)
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What about representation theory?

char table of S7 :

P(χ(g) = 0) = 28146/75600 ≈ 0.372, P(χ(C ) = 0) = 55/225 ≈ 0.24

▶ Problem Determine for which g ∈ G we have χ(g) = 0 Too hard!

▶ Better(?) problem P(χ(g) = 0) or P(χ(C ) = 0) for randomly chosen g ∈ G

or conjugacy class C

A problem we have seen before :

Frobenius ∼1895++ Character formulas for Sn

Hepler ∼1994 (potentially known earlier)
To determine the zeros for Sn is #P complete (=very difficult)

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 1-hour-work code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here!

Many people ∼1911++ There are many groups with the same type of behavior
and also many related statements

These tables are due to Alexander Miller

A very difficult problem might have a nice answer

almost all of the time – similarly to the Hamiltonian graph problem
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2, then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

limn→∞
n
√
bn seems to converge to 2 = dimV : 1000

√
b1000 ≈ 1.99265

dimV = 1 works perfectly well

but then my story about exponential growth is flawed

so I ignore dimV = 1 and assume dimV > 1

If you do not know what an affine semigroup superscheme is

you are in goodsome company: I do not know either!

We go by examples!

Examples
Any finite group, monoid, semigroup

Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Slogan This is a very general setting

A problem we have seen before :

Murnaghan ∼1938 Asked to decompose V⊗n over C
for Sn and V simple (Kronecker coefficients)

Hepler ∼1994 (potentially known earlier)
Computing Kronecker coefficients is #P complete (=very difficult)

This is a very special case of what CEO want to do...

Simplify the problem :

(a) Consider only the multiplicities instead of decompositions

(b) Assume that n is very large

Observation 1

Whatever is true for SL2 over C is true in general, right?

So let us come back to the general setting:
Γ = affine semigroup superscheme

K = any field, V = any fin dim Γ-rep
bn = bΓ,V

n =number of indecomposable summands of V⊗n (with multiplicities)

Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimV

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimV ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

In other words, compared to the size of the exponential growth of (dimV )n

all indecomposable summands are ‘essentially one-dimensional’

Honorable mentions

Coulembier–Etingof–Ostrik ∼2023 The same holds for any
K-linear Karoubian monoidal category that is Krull–Schmidt

and has a K-linear faithful symmetric monoidal functor to K-vector spaces

Coulembier–Etingof–Ostrik ∼2023
Ditto in char zero when we go to super K-vector spaces

Coulembier–Etingof–Ostrik ∼2022 Assume that our category has duals
If one only counts summands whose dim is divisible by some fixed prime

then the limit is an algebraic integer in [1, dimV ]

Coulembier–Etingof–Ostrik ∼2023

Many more results!

A very difficult problem might have a nice answer

if we are happy with nonexact solutions – similarly to the prime number theorem
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There is still much to do...

Thanks for your attention!
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Let us not count!

▶ Observation Many problems are only difficult because we like exact solutions

▶ Bonus observation Many difficult problems are easy for large subclasses

▶ Analytic method (Folklore ∼very early) Approximate answers are often

much easier to get

If you do not know what this means in general

you are in goodsome company: I do not know either!

We go by examples!

Example/appetizer 1 from number theory – historically the first of its kind!?

Example/appetizer 2 from graph theory – easy to understand and prototypical

Example 3 from representation theory – prototypical

Example 4 from tensor categories – finally there

∼ means asymptotically = ratios are good (not the absolute difference!)

So this is not doing the count!

Seriously, counting is difficult!

Legendre ∼1808:

(for n/(ln n − 1.08366))

Gauss, Legendre and company counted primes up to n = 400000 and more

That took years (your IPhone can do that in seconds...humans have advanced!)

The prime number theorem gave birth to analytic number theory

Analytic number theory is full of
“discrete statements solved approximately”

A very difficult problem might have a nice answer

if we are happy with nonexact solutions

Hamil/All
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The precise statement

Pósa showed that P(Hamil) → 1 for n → ∞ and graphs with cn ln n edges
This implies #HamilGraphs on ≤ n vertices / #AllGraphs on ≤ n vertices

goes to zero for n → ∞ since most graphs have ≥ c ′n2 edges

The proof of this theorem
is a not difficult counting argument

In general, graph theory

provides many statements of the form
“XYZ is very difficult, but we can solve it approximately”

A very difficult problem might have a nice answer

almost all of the time
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Let us not count!

▶ To determine precisely whether a graph is Hamiltonian is difficult

▶ To determine approximately whether a graph is Hamiltonian is easy

▶ Pósa∼1976 Choosing a graph randomly, the probability is 1 that the graph

is Hamiltonian: limn→∞ P(Hamil) = 1 (probability)

If you do not know what this means in general

you are in goodsome company: I do not know either!
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What about representation theory?

char table of S7 :

P(χ(g) = 0) = 28146/75600 ≈ 0.372, P(χ(C ) = 0) = 55/225 ≈ 0.24

▶ Problem Determine for which g ∈ G we have χ(g) = 0 Too hard!

▶ Better(?) problem P(χ(g) = 0) or P(χ(C ) = 0) for randomly chosen g ∈ G

or conjugacy class C

A problem we have seen before :

Frobenius ∼1895++ Character formulas for Sn

Hepler ∼1994 (potentially known earlier)
To determine the zeros for Sn is #P complete (=very difficult)

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 1-hour-work code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here!

Many people ∼1911++ There are many groups with the same type of behavior
and also many related statements

These tables are due to Alexander Miller

A very difficult problem might have a nice answer

almost all of the time – similarly to the Hamiltonian graph problem
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What about representation theory?

for up to A17 :

▶ Miller ∼2013 Choosing Sn, g ∈ Sn and χ simple character of Sn randomly,

the probability is 1 that χ(g) = 0 (formally, limn→∞ P(χ(g) = 0) = 1)

▶ limn→∞ P(χ(C ) = 0) =?, but this is likely neither 0 nor 1 !

A problem we have seen before :

Frobenius ∼1895++ Character formulas for Sn

Hepler ∼1994 (potentially known earlier)
To determine the zeros for Sn is #P complete (=very difficult)

Here is P(χ(g) = 0):

Here is P(χ(C) = 0):

My silly 1-hour-work code only made it to S17, pathetic , sorry for that!

Alexander Miller computed these up to S38

Anyway, we can guess from here!

Many people ∼1911++ There are many groups with the same type of behavior
and also many related statements

These tables are due to Alexander Miller

A very difficult problem might have a nice answer

almost all of the time – similarly to the Hamiltonian graph problem
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What about representation theory?
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▶ bn = bΓ,Vn =number of indecomposable summands of V⊗n (with multiplicities)

▶ Example Γ = SL2, K = C, V = C2, then

{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252}, bn for n = 0, ..., 10.

limn→∞
n
√
bn seems to converge to 2 = dimV : 1000

√
b1000 ≈ 1.99265

dimV = 1 works perfectly well

but then my story about exponential growth is flawed

so I ignore dimV = 1 and assume dimV > 1

If you do not know what an affine semigroup superscheme is

you are in goodsome company: I do not know either!

We go by examples!

Examples
Any finite group, monoid, semigroup

Symmetric groups, alternating groups, cyclic groups, the monster, GLN(Fpk ), ...

Actually any group, monoid, semigroup

GLN(C), GLN(R), GLN(Fpk ), symplectic, orthogonal, braid groups, Thompson groups, ...

Super versions
GLM|N , OSPM|2N , periplectic, queer, ...

Slogan This is a very general setting

A problem we have seen before :

Murnaghan ∼1938 Asked to decompose V⊗n over C
for Sn and V simple (Kronecker coefficients)

Hepler ∼1994 (potentially known earlier)
Computing Kronecker coefficients is #P complete (=very difficult)

This is a very special case of what CEO want to do...

Simplify the problem :

(a) Consider only the multiplicities instead of decompositions

(b) Assume that n is very large

Observation 1

Whatever is true for SL2 over C is true in general, right?

So let us come back to the general setting:
Γ = affine semigroup superscheme

K = any field, V = any fin dim Γ-rep
bn = bΓ,V

n =number of indecomposable summands of V⊗n (with multiplicities)

Observation 2

bnbm ≤ bn+m ⇒
β = limn→∞

n
√
bn

is well-defined by a version of Fekete’s Subadditive Lemma

Observation 3

1 ≤ β ≤ dimV

β = 1 ⇔ V⊗n for n ≫ 0 is ‘one block’

β = dimV ⇔ summands of V⊗n for n ≫ 0 are ‘essentially one-dimensional’

Exponential growth is scary

In other words, compared to the size of the exponential growth of (dimV )n

all indecomposable summands are ‘essentially one-dimensional’

Honorable mentions

Coulembier–Etingof–Ostrik ∼2023 The same holds for any
K-linear Karoubian monoidal category that is Krull–Schmidt

and has a K-linear faithful symmetric monoidal functor to K-vector spaces

Coulembier–Etingof–Ostrik ∼2023
Ditto in char zero when we go to super K-vector spaces

Coulembier–Etingof–Ostrik ∼2022 Assume that our category has duals
If one only counts summands whose dim is divisible by some fixed prime

then the limit is an algebraic integer in [1, dimV ]

Coulembier–Etingof–Ostrik ∼2023

Many more results!

A very difficult problem might have a nice answer

if we are happy with nonexact solutions – similarly to the prime number theorem
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What about representation theory?
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There is still much to do...

Thanks for your attention!
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