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▶ Khovanov–Lauda–Rouquier ∼2008 + many others (including many people

here) KLR algebras are at the heart of categorical representation theory

▶ Problem These are actually really complicated!

▶ Goal Try to find nice (“cellular”) bases for them

In this talk will be about,in order 3), 1), 3) and ramble on 2):

diagrammatics , cellularity and partnership :

1) The diagram combinatorics

2) Sandwich cellularity

3) Idempotents and crystals partners

Sandwich cellularity
goes back to Brown ∼1955

From crystals to cellularity of KLR algebras Or: String games December 2022 2 / 7



What? Why? How?

Idea (Webster ∼2012 for KLR+friends, folklore <2012 as a general approach)

▶ Use an algebra that depends on continuous parameters ⇒ wKLRW algebra

▶ Varying the parameters relates “important” algebras by “passing singularities”

In this talk will be about,in order 3), 1), 3) and ramble on 2):

diagrammatics , cellularity and partnership :

1) The diagram combinatorics

2) Sandwich cellularity

3) Idempotents and crystals partners

Sandwich cellularity
goes back to Brown ∼1955
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Reps at q = 0

▶ In this talk, g is some Kac–Moody algebra with Chevalley generators ei , fi

▶ In essence, a crystal is a direct graph with colored edges, and it is the
combinatorial shadow of a g-rep

vertices↭ weight spaces colored edges↭ action of the fi

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

▶ Example (above) The simple sl2-rep Sym4C2 via the vanilla , tableaux , PBW flavor

▶ Crystal magic Get rid of all funny coefficients and summands, and only keep

the “main part” of g-reps

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story

From crystals to cellularity of KLR algebras Or: String games December 2022 π / 7



Reps at q = 0

▶ Example (above) The simple sl5-rep C5 via the vanilla , tableaux , PBW flavor

▶ Crystal magic Get rid of all funny coefficients and summands, and only keep

the “main part” of g-reps

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

A4↭ SL5(C)
B4↭ SO9(C)
C4↭ SP8(C)
D4↭ SO8(C)

▶ Example (above) The simple reps L(Λ1) of classical types

▶ Crystal magic Get rid of all funny coefficients and summands, and only keep

the “main part” of g-reps

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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▶ Crystal magic Get rid of all funny coefficients and summands, and only keep
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Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics
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algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world
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Reps at q = 0

Let us enjoy some crystals in type A2:

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

q = 0

of the

PBW theorem:

▶ In finite type one can cut out all crystals from a general PBW crystal

▶ Idea If the partnership between crystals and KLR algebras works, then finite

type KLR algebra should be quite special

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

▶ Every graph can be embedded into some orientable surface (proof above)

▶ Hence, we can talk about faces in crystals

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)
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They might look different but are actually the “same”
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String diagrams – the baby case

Connect eight points at the bottom with eight points at the top:

(1243)(5876)↭

or

(12436)(57)(8)↭

We just invented the symmetric group S8

The bait

In diagram algebras relations, properties, etc.
become visually clear

The catch

Diagram algebras are usually “not really” using any planar geometry

For example, the diagrams for symmetric groups
are just algebra written differently

Idea (Webster ∼2012)

Define a diagram algebra that uses the distance in R2

The result is called weighted KLRW=wKLRW algebra

These are “planar-geometrically symmetric group diagram algebras”
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My multiplication rule for gh is “stack g on top of h”
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For example, the diagrams for symmetric groups
are just algebra written differently

Idea (Webster ∼2012)

Define a diagram algebra that uses the distance in R2

The result is called weighted KLRW=wKLRW algebra

These are “planar-geometrically symmetric group diagram algebras”

From crystals to cellularity of KLR algebras Or: String games December 2022 4 / 7



String diagrams – the baby case

▶ We clearly have g(hf ) = (gh)f

▶ There is a do nothing operation 1g = g = g1

=

▶ Generators–relations (the Reidemeister moves)

gens : , rels : = , =
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Weighted string diagrams

22

22038 7

▶ Strings come in three types, solid , ghost and red

solid :

i

, ghost :

i

, red :

i

,

▶ Strings are labeled, and solid and ghost strings can carry dots

▶ Red strings anchor the diagram (red strings↭ level)

▶ Otherwise no difference to symmetric group diagrams

Weighting = ghost shifts

For ϵ : i → j , σϵ > 0, all solid i-strings get a ghost shifted |σϵ| units and mimicking it
For ϵ : i → j , σϵ < 0, all solid j-strings get a ghost shifted |σϵ| units and mimicking it

This “asymmetric” definition, always shifting rightwards
makes life a bit more convenient

The following i and j-strings are not close:

Slogan Ghosts prevent the diagrams from being scale-able as for “usual” diagram algebras

“Big” C[X ]/(X − a)(X − b)

“Small” C[X ]/(X 2) C[X ]/(X 2 − 1)

a=0,b=0 a=1,b=−1

a, b↭ Positions and ghost shifts

Semisimple Huge ghost shifts

KLR Tiny ghost shifts

Quiver Schur Some specific “cluster” spacing

Diagrammatic Cherednik Ghost shifts 1

Unnamed algebras The rest

▶ Alcoves of the HA ⇒ Morita equivalence classes of wKLRW algebras

▶ There is a theory of translation functors

▶ ≈picture 1 There is an alcove for KLR, an alcove for the semisimple case etc.

▶ ≈picture 2 Translation functors interpolate between these algebras

KLR

Quiver Schur

Dia. Cherednik

Semisimple

This is an ≈picture
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Weighted string diagrams

Examples of quivers Γ

▶ The strings are labeled by i ∈ I from a fixed quiver Γ = (I ,E )

▶ The relations (that I am not going to show you ;-)) depend on e ∈ E , e.g.:

i j

=

i j

+

i j

if i → j

Weighting = ghost shifts

For ϵ : i → j , σϵ > 0, all solid i-strings get a ghost shifted |σϵ| units and mimicking it
For ϵ : i → j , σϵ < 0, all solid j-strings get a ghost shifted |σϵ| units and mimicking it

This “asymmetric” definition, always shifting rightwards
makes life a bit more convenient

The following i and j-strings are not close:
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▶ ≈picture 2 Translation functors interpolate between these algebras

KLR

Quiver Schur

Dia. Cherednik
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Placing strings: crystals and wKLRW

▶ We now play a string placing game

▶ Only certain “good” configurations give nice tones

▶ The “good” configurations come from paths in crystal graphs

wKLRW algebras are string diagram algebras associated to a quiver

with the point being the presence or absence of Reidemeister moves

That means that sometimes strings get blocked

▶ The overall strategy to construct sandwich cellular bases

is the same for all type (but the details differ)

and for the infinite dimensional and the cyclotomic case the construction is also the same

The bases one gets are different from the ones of Kleshchev–Loubert(–Miemietz) ∼2013

▶ We know that the cellular bases work in several type (including finite type)
and we can use crystal combinatorics to rule out that e.g. affine types D,E work

This also uses an argument of Ehrig, Evseev, Kleshchev–Muth ∼?

▶ The combinatorics is inspired by, but different from, constructions of
Bowman ∼2017, Ariki–Park ∼2012/2013, Ariki–Park–Speyer ∼2017

Overview of cellularity (strictly speaking finite type is work in progress )
Wrap up

KLR + crystal

▶ wKLRW algebras generalize KLR algebras and friends

▶ wKLRW algebras interpolate between KLR algebras and friends

▶ Bases can be constructed from crystals (wishful thinking)

▶ These bases are sometimes cellular, depending on the crystal (wishful thinking)
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What? Why? How?

Idea (Webster ∼2012 for KLR+friends, folklore <2012 as a general approach)

▶ Use an algebra that depends on continuous parameters ⇒ wKLRW algebra

▶ Varying the parameters relates “important” algebras by “passing singularities”

In this talk will be about,in order 3), 1), 3) and ramble on 2):

diagrammatics , cellularity and partnership :

1) The diagram combinatorics

2) Sandwich cellularity

3) Idempotents and crystals partners

Sandwich cellularity
goes back to Brown ∼1955
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Reps at q = 0

A4↭ SL5(C)
B4↭ SO9(C)
C4↭ SP8(C)
D4↭ SO8(C)

▶ Example (above) The simple reps L(Λ1) of classical types

▶ Crystal magic Get rid of all funny coefficients and summands, and only keep

the “main part” of g-reps

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

Let us enjoy some crystals in type A2:

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

▶ Every graph can be embedded into some orientable surface (proof above)

▶ Hence, we can talk about faces in crystals

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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String diagrams – the baby case

Connect eight points at the bottom with eight points at the top:

(1243)(5876)↭

or

(12436)(57)(8)↭

We just invented the symmetric group S8

The bait

In diagram algebras relations, properties, etc.
become visually clear

The catch

Diagram algebras are usually “not really” using any planar geometry

For example, the diagrams for symmetric groups
are just algebra written differently

Idea (Webster ∼2012)

Define a diagram algebra that uses the distance in R2

The result is called weighted KLRW=wKLRW algebra

These are “planar-geometrically symmetric group diagram algebras”
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Weighted string diagrams
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▶ Strings come in three types, solid , ghost and red

solid :

i

, ghost :

i

, red :

i

,

▶ Strings are labeled, and solid and ghost strings can carry dots

▶ Red strings anchor the diagram (red strings↭ level)

▶ Otherwise no difference to symmetric group diagrams

Weighting = ghost shifts

For ϵ : i → j , σϵ > 0, all solid i-strings get a ghost shifted |σϵ| units and mimicking it
For ϵ : i → j , σϵ < 0, all solid j-strings get a ghost shifted |σϵ| units and mimicking it

This “asymmetric” definition, always shifting rightwards
makes life a bit more convenient

The following i and j-strings are not close:

Slogan Ghosts prevent the diagrams from being scale-able as for “usual” diagram algebras

“Big” C[X ]/(X − a)(X − b)

“Small” C[X ]/(X 2) C[X ]/(X 2 − 1)

a=0,b=0 a=1,b=−1

a, b↭ Positions and ghost shifts

Semisimple Huge ghost shifts

KLR Tiny ghost shifts

Quiver Schur Some specific “cluster” spacing

Diagrammatic Cherednik Ghost shifts 1

Unnamed algebras The rest

▶ Alcoves of the HA ⇒ Morita equivalence classes of wKLRW algebras

▶ There is a theory of translation functors

▶ ≈picture 1 There is an alcove for KLR, an alcove for the semisimple case etc.

▶ ≈picture 2 Translation functors interpolate between these algebras

KLR

Quiver Schur

Dia. Cherednik

Semisimple

This is an ≈picture
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Weighted string diagrams

▶ There is a hyperplane arrangment (HA) associated to the wKLRW
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Placing strings: crystals and wKLRW

In finite types the PBW theorem for crystals implies that:

▶ For a fixed choice of path per vertex 1Λ gives rise to a cell module with an
associated simple

▶ All simples arise in this way

▶ Simples for different vertices are not equivalent

wKLRW algebras are string diagram algebras associated to a quiver

with the point being the presence or absence of Reidemeister moves

That means that sometimes strings get blocked

▶ The overall strategy to construct sandwich cellular bases

is the same for all type (but the details differ)

and for the infinite dimensional and the cyclotomic case the construction is also the same

The bases one gets are different from the ones of Kleshchev–Loubert(–Miemietz) ∼2013

▶ We know that the cellular bases work in several type (including finite type)
and we can use crystal combinatorics to rule out that e.g. affine types D,E work

This also uses an argument of Ehrig, Evseev, Kleshchev–Muth ∼?

▶ The combinatorics is inspired by, but different from, constructions of
Bowman ∼2017, Ariki–Park ∼2012/2013, Ariki–Park–Speyer ∼2017

Overview of cellularity (strictly speaking finite type is work in progress )

Wrap up

KLR + crystal

▶ wKLRW algebras generalize KLR algebras and friends

▶ wKLRW algebras interpolate between KLR algebras and friends

▶ Bases can be constructed from crystals (wishful thinking)

▶ These bases are sometimes cellular, depending on the crystal (wishful thinking)
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There is still much to do...

Thanks for your attention!

From crystals to cellularity of KLR algebras Or: String games December 2022 7 / 7



What? Why? How?

Idea (Webster ∼2012 for KLR+friends, folklore <2012 as a general approach)

▶ Use an algebra that depends on continuous parameters ⇒ wKLRW algebra

▶ Varying the parameters relates “important” algebras by “passing singularities”

In this talk will be about,in order 3), 1), 3) and ramble on 2):

diagrammatics , cellularity and partnership :

1) The diagram combinatorics

2) Sandwich cellularity

3) Idempotents and crystals partners

Sandwich cellularity
goes back to Brown ∼1955
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Reps at q = 0

A4↭ SL5(C)
B4↭ SO9(C)
C4↭ SP8(C)
D4↭ SO8(C)

▶ Example (above) The simple reps L(Λ1) of classical types

▶ Crystal magic Get rid of all funny coefficients and summands, and only keep

the “main part” of g-reps

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story
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Reps at q = 0

Let us enjoy some crystals in type A2:

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD

PBW Works for finite types

The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”
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Reps at q = 0

▶ Every graph can be embedded into some orientable surface (proof above)

▶ Hence, we can talk about faces in crystals

Crystals come in many flavors:

Vanilla Works in general

Tableaux Works for classical types ABCD
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The point Any flavor has different combinatorics

Idea (Folklore ∼2010)

The combinatorics of crystals determines
algebraic properties of KLR/wKLRW algebras and vice versa

They might look different but are actually the “same”

Theorem (KLR, Brundan–Kleshchev, Kang–Kashiwara,
Webster, Lauda–Vazirani, many more ∼2010)

Cyclotomic KLR algebras categorify highest weight g-reps
and the categories of their graded modules
have the structure of the underlying crystal

Serre relations in crystals (Stembridge ∼2002, Sternberg ∼2007)

The minimal i-j faces in (fundamental) crystals of finite type are either

Tetragon=square colored ij = ji

Octagons=8gon colored ijji = jiij

Decagons=10gon colored ijjji = jiijj = jijij

Tetradecagon=14gon colored ijjijij = jiijjji = jijijji = ijjjiij

Type A has only squares
Simply-laced types have only squares and octagons

This implies for example
that there are only very! finitely many
relation to show in the KLR world

in our story

From crystals to cellularity of KLR algebras Or: String games December 2022 π / 7

String diagrams – the baby case

Connect eight points at the bottom with eight points at the top:

(1243)(5876)↭

or

(12436)(57)(8)↭

We just invented the symmetric group S8

The bait

In diagram algebras relations, properties, etc.
become visually clear

The catch

Diagram algebras are usually “not really” using any planar geometry

For example, the diagrams for symmetric groups
are just algebra written differently

Idea (Webster ∼2012)

Define a diagram algebra that uses the distance in R2

The result is called weighted KLRW=wKLRW algebra

These are “planar-geometrically symmetric group diagram algebras”
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Weighted string diagrams
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▶ Strings come in three types, solid , ghost and red

solid :

i

, ghost :

i

, red :

i

,

▶ Strings are labeled, and solid and ghost strings can carry dots

▶ Red strings anchor the diagram (red strings↭ level)

▶ Otherwise no difference to symmetric group diagrams

Weighting = ghost shifts

For ϵ : i → j , σϵ > 0, all solid i-strings get a ghost shifted |σϵ| units and mimicking it
For ϵ : i → j , σϵ < 0, all solid j-strings get a ghost shifted |σϵ| units and mimicking it

This “asymmetric” definition, always shifting rightwards
makes life a bit more convenient

The following i and j-strings are not close:

Slogan Ghosts prevent the diagrams from being scale-able as for “usual” diagram algebras

“Big” C[X ]/(X − a)(X − b)

“Small” C[X ]/(X 2) C[X ]/(X 2 − 1)

a=0,b=0 a=1,b=−1

a, b↭ Positions and ghost shifts

Semisimple Huge ghost shifts

KLR Tiny ghost shifts

Quiver Schur Some specific “cluster” spacing

Diagrammatic Cherednik Ghost shifts 1

Unnamed algebras The rest

▶ Alcoves of the HA ⇒ Morita equivalence classes of wKLRW algebras

▶ There is a theory of translation functors

▶ ≈picture 1 There is an alcove for KLR, an alcove for the semisimple case etc.

▶ ≈picture 2 Translation functors interpolate between these algebras

KLR

Quiver Schur

Dia. Cherednik

Semisimple

This is an ≈picture
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▶ There is a hyperplane arrangment (HA) associated to the wKLRW

▶ The hyperplanes are defined by “colliding strings” (a form of distance)

Weighting = ghost shifts

For ϵ : i → j , σϵ > 0, all solid i-strings get a ghost shifted |σϵ| units and mimicking it
For ϵ : i → j , σϵ < 0, all solid j-strings get a ghost shifted |σϵ| units and mimicking it

This “asymmetric” definition, always shifting rightwards
makes life a bit more convenient

The following i and j-strings are not close:

Slogan Ghosts prevent the diagrams from being scale-able as for “usual” diagram algebras

“Big” C[X ]/(X − a)(X − b)

“Small” C[X ]/(X 2) C[X ]/(X 2 − 1)

a=0,b=0 a=1,b=−1

a, b↭ Positions and ghost shifts

Semisimple Huge ghost shifts

KLR Tiny ghost shifts

Quiver Schur Some specific “cluster” spacing

Diagrammatic Cherednik Ghost shifts 1

Unnamed algebras The rest

▶ Alcoves of the HA ⇒ Morita equivalence classes of wKLRW algebras

▶ There is a theory of translation functors

▶ ≈picture 1 There is an alcove for KLR, an alcove for the semisimple case etc.

▶ ≈picture 2 Translation functors interpolate between these algebras

KLR

Quiver Schur

Dia. Cherednik

Semisimple

This is an ≈picture

From crystals to cellularity of KLR algebras Or: String games December 2022 5 / 7

Placing strings: crystals and wKLRW

In finite types the PBW theorem for crystals implies that:

▶ For a fixed choice of path per vertex 1Λ gives rise to a cell module with an
associated simple

▶ All simples arise in this way

▶ Simples for different vertices are not equivalent

wKLRW algebras are string diagram algebras associated to a quiver

with the point being the presence or absence of Reidemeister moves

That means that sometimes strings get blocked

▶ The overall strategy to construct sandwich cellular bases

is the same for all type (but the details differ)

and for the infinite dimensional and the cyclotomic case the construction is also the same

The bases one gets are different from the ones of Kleshchev–Loubert(–Miemietz) ∼2013

▶ We know that the cellular bases work in several type (including finite type)
and we can use crystal combinatorics to rule out that e.g. affine types D,E work

This also uses an argument of Ehrig, Evseev, Kleshchev–Muth ∼?

▶ The combinatorics is inspired by, but different from, constructions of
Bowman ∼2017, Ariki–Park ∼2012/2013, Ariki–Park–Speyer ∼2017

Overview of cellularity (strictly speaking finite type is work in progress )

Wrap up

KLR + crystal

▶ wKLRW algebras generalize KLR algebras and friends

▶ wKLRW algebras interpolate between KLR algebras and friends

▶ Bases can be constructed from crystals (wishful thinking)

▶ These bases are sometimes cellular, depending on the crystal (wishful thinking)
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There is still much to do...

Thanks for your attention!
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