What is...tropical geometry - part 9?

Or: The tropical Bézout's theorem

Line intersects line

• Degree (d) one and one Two lines $p_1 \neq p_2$ intersect in one point $(1 \cdot 1 = 1)$

Problem This is not quite true: they could be parallel

Classical solution = invent projective space where this is always true

Line intersects circle

• d one and two A circle and a line intersect in two points $(1 \cdot 2 = 2)$

Problem This is not quite true: the line could be "out of reach"

• Classical solution = work over \mathbb{C} and not \mathbb{R}

Hyperbola intersects circle

- d two and two A hyperbola and a circle intersect in 4 points $(2 \cdot 2 = 4)$
- Problem This is not quite true: they could be tangent to one another
- Solution = say "intersect generically"

Theorem

- (i) Two complex projective curves intersect generically in 'product of degrees' many points
- (ii) Two tropical curves intersect generically in 'product of degrees' many points
 - \blacktriangleright Tropically there is no need to work over $\mathbb C$ or in projective space
 - "Proof" Put the following pictures on top of one another $(1 \cdot 2 = 2)$:

Random coefficients

- Intersect generically = almost all of the time
- Example Choose coefficients randomly
- Above = a random image

Thank you for your attention!

I hope that was of some help.