What is...tropical geometry - part 22?

Or: Tropical applications 2 - Phylogenetic trees

Phylogenetics: math formulation

- ► Goal Reconstruct evolutionary trees from DNA data
- ► Input A distance matrix between species
- ► Output A metric tree with leaves labeled by species

Tree metrics

- ▶ A tree metric d(i,j) = path length between leaves i,j
- ► Characterized by the four-point condition (above)
- ► Space of tree metrics = all distance matrices satisfying this condition

Enter tropical geometry

- ▶ $G(2, n) = \text{classical Grassmannian of 2-planes in } \mathbb{C}^n$
- ▶ $\operatorname{Trop}(G(2, n)) = \operatorname{its} \operatorname{tropicalization}$, a polyhedral fan
- ► This variety turns out to encode tree space

For completeness: A formal statement

 $\operatorname{Trop}(G(2, n)) = \operatorname{space} \operatorname{of} \operatorname{phylogenetic} \operatorname{trees} \operatorname{on} n \operatorname{leaves}$

- ▶ Cones of $Trop(Gr(2, n)) \iff$ different tree topologies
- ► Coordinates in each cone = edge lengths
- ▶ Reference : Speyer–Sturmfels (2004), *The Tropical Grassmannian*

Applications

- ► Compute distance matrix from DNA/protein data
- ▶ Project onto the tropical Grassmannian (tree space)
- ▶ Recover the phylogenetic tree efficiently and robustly

Thank you for your attention!

I hope that was of some help.