Or: Representations of symmetric groups, part 2
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» Simple S, reps/C are in bijection with Young diagrams with n boxes

» Goal Make the bijection explicit



As a vector space
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» S has a basis given by all standard Young tableaux of shape A

» The action should be | “permute numbers”  but that does not quite work



Same row: (12) .

Same column: (12) .

Rest: (23) .

“Permute numbers”

+ error terms
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» Define the action only for the simple transpositions (i, i + 1)

» Three different cases depending on / and i + 1:

e [Same row case Eigenvalue 1 plus error terms

e Same column case Eigenvalue —1

e [Rest Permute



For completeness: A formal statement

For all A € P(n) (set of partitions of n) there exists an S, module S* such that:
» A basis of S* is given by all standard tableaux of shape A

» The action is “permute numbers” as before

» The S* are simple /C
» The S* are pairwise nonisomorphic

» All simple S, modules/C are of the form S* for some A € P(n)
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Specht modules work integrally

1 _J1]2] 3] .13
3 3 2
(23).| 1 [2] = ,(23). 113 =
3 2 2
1 0 mod 3 ]. 0
(12) e~ (—1 —1) 3(2 2)

@3) - (

0 1
1 0

)= (

01
1 0

» The matrices of Specht modules have integer entries

» Specht modules can thus be defined over any field

> - They are in general not simple




| hope that was of some help.



