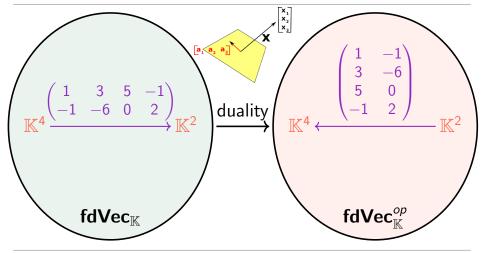
What is...quantum topology - part 19?

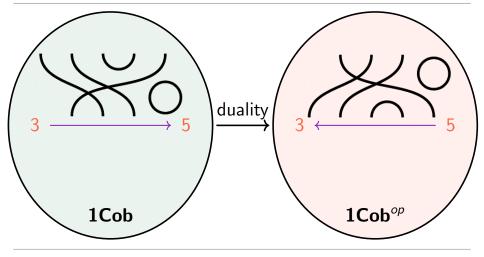
Or: Pivotal categories 1 from Chapter 4

Duality: transposing matrices



- ▶ In **fdVec** duality is taking the dual vector space
- ▶ Duality on objects does not change the object $(\mathbb{K}^n)^* \cong \mathbb{K}^n$ Fix
- ► Duality transposed matrices and reverses their direction Flip

Duality: flipping diagrams



- ▶ In **1Cob** duality is taking a mirror along y = 0
- ▶ Duality on objects does not change the object $n^* = n$ Fix
- ► Duality flips diagrams and reverses their direction Flip

Singularities

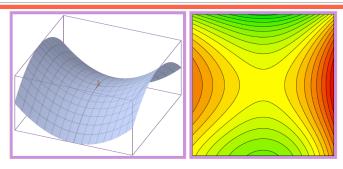


FIGURE 9. In a nutshell, Morse theory is the idea that most point on a manifold have nicely behaved neighborhoods and only a few critical points (called *Morse points*) where the behavior changes drastically need to be studied. The pictures show a saddle point on a surface and its contour lines; this is a prototypical examples of a critical point where the behavior of a system changes.

 ${\bf Pictures\ from\ https://en.wikipedia.org/wiki/Morse_theory.}$

- ► Singularities = points of drastic change
- ► These are of crucial importance (not just in math)
- ► Goal Have singularities in diagrams

For completeness: A formal definition

 $\mathbf{Definition\ 4B.1.\ A\ \textit{right\ dual\ }}(\mathtt{X}^{\star}, \mathrm{ev}_{\mathtt{X}}, \mathrm{coev}_{\mathtt{X}})\ \mathrm{of}\ \mathtt{X} \in \mathbf{C}\ \mathrm{in\ a\ category\ }\mathbf{C} \in \mathbf{MCat}\ \mathrm{consists\ of}$

- an object $X^* \in \mathbf{C}$;
- a (right) evaluation ev_X and a (right) coevaluation ev_X , i.e. morphisms

$$(4B-2) \qquad \qquad \operatorname{ev}_{X} \colon XX^{\star} \to \mathbb{1} \iff \underbrace{\overset{\operatorname{ev}}{\underset{X}{\longleftarrow}}}, \quad \operatorname{coev}_{X} \colon \colon \mathbb{1} \to (X^{\star})X \iff \underbrace{\overset{\operatorname{A}}{\underset{\operatorname{coev}}{\longleftarrow}}},$$

such that they are non-degenerate, i.e.

(4B-3)
$$\begin{array}{c} \underbrace{\text{ev}}_{\text{X}^*} \underbrace{\text{coev}}_{\text{X}} = \underbrace{\text{A}}_{\text{X}}, \quad \underbrace{\text{Coev}}_{\text{X}^*} \underbrace{\text{A}}_{\text{X}^*} = \underbrace{\text{A}}_{\text{X}^*}. \end{aligned}$$

Similarly, a $\textit{left dual}\ ({}^{\star}X, \operatorname{ev}^X, \operatorname{coev}^X)$ of $X \in \mathbf{C}$ in a category $\mathbf{C} \in \mathbf{MCat}$ consists of

- an object *X ∈ C:
- \bullet a (left) evaluation $\mathrm{ev}^{\mathtt{X}}$ and a (left) coevaluation $\mathrm{coev}^{\mathtt{X}},$ i.e. morphisms

$$(4B-4) \qquad \qquad \operatorname{ev}^{\mathtt{X}} : {}^{\star}\mathtt{X}\mathtt{X} \to 1 \overset{\bullet}{\longleftarrow} \underbrace{\overset{ev}{\underset{\mathtt{Y}}{\longleftarrow}}}, \quad \operatorname{coev}^{\mathtt{X}} : : 1 \to \mathtt{X}({}^{\star}\mathtt{X}) \overset{\star}{\longleftarrow} \underbrace{\overset{\mathtt{X}}{\longleftarrow} \overset{\star}{\longleftarrow}}_{\operatorname{coev}};$$

such that they are non-degenerate, i.e.

$$(4B-5) \qquad \begin{array}{c} \overset{\star}{\underset{\star}{\text{v}}} & \overset{\star}{\underset{\star}{\text{v}}}$$

We call (4B-3) and (4B-5) the zigzag relations.

Duality and Morse points

- ▶ Idea Use an orientation to distinguish X and its dual
- ► Evaluations and coevaluations become Morse points
- ► Non-degeneracy becomes straightening

Thank you for your attention!

I hope that was of some help.