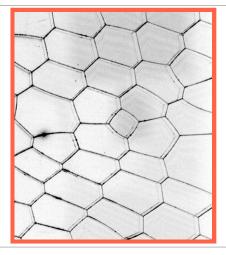

What is...quantum topology - part 16?

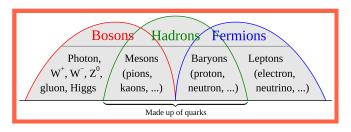

Or: Monoidal categories 4 from Chapter 2

Super mathematics

- ▶ Super $= \mathbb{Z}/2\mathbb{Z}$ graded (think: even and odd; bosons and fermions)
- ► Monoidal rules even⊗even=odd⊗odd=even, even⊗odd=odd⊗even=odd
- ▶ This video The category $Vec^{dia}_{\mathbb{C}}(\mathbb{Z}/2\mathbb{Z})$ of super vector spaces diagrammatically

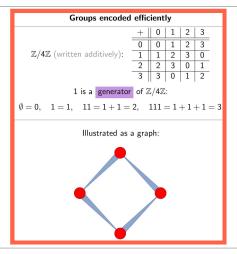
Webs

- ▶ Webs = trivalent graphs (potentially with boundary i.e. degree one vertices)
- ► Above A web (a cut through a soap foam)
- ▶ These are morphisms in $Vec_{\mathbb{C}}^{dia}(\mathbb{Z}/2\mathbb{Z})$


Super vector spaces $Vec_{\mathbb{C}}^{dia}(\mathbb{Z}/2\mathbb{Z})$

- ▶ Objects = boundary points = elements of $\mathbb{Z}/2\mathbb{Z}$ (not drawing the trivial element 1)
- ► Morphisms = webs modulo relations as above
- ▶ This actually works for any grading group G where the objects are now elements of G and morphisms are labeled webs

For completeness: A formal definition


Upon taking direct and allowing scalars, $Vec_{\mathbb{C}}^{dia}(\mathbb{Z}/2\mathbb{Z})$ is (monoidally equivalent to) the category of super vector spaces $Vec_{\mathbb{C}}(\mathbb{Z}/2\mathbb{Z})$

These come from a mathematical theory describing bosons versus fermions

Generators-relations

- ▶ Above A group given as a multiplication table; like $Vec_{\mathbb{C}}(\mathbb{Z}/2\mathbb{Z})$
- ▶ Above 2 A group given by generators-relations; like $Vec_{\mathbb{C}}^{dia}(\mathbb{Z}/2\mathbb{Z})$
- ► Game we will play Try to find generators-relations of 'nice' categories

Thank you for your attention!

I hope that was of some help.