Or: Eigenvalues and characters



Graphs for group
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» Cayley graphs I associated to group presentations G = (S)

> - are the group elements

» Colored edges encode the action of the generators from S

> - What properties of G are encoded in 7



From groups to graphs to matrices
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» Go from a graph to a matrix via the 'adjacency matrix
» Matrix = linear algebra

» Question What can linear algebra tell us about G?
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Eigenvalues
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Eigenvalues : {2,0,0,0,-1, -1}

» Linear algebra says: eigenvalues are useful!
» Linear algebra is trustworthy

» So we compute eigenvalues of Cayley graphs and hope for the best
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Enter, the theorem

The eigenvalues of the Cayley graphs of a finite group G = (S):
» can be - by the conjugacy classes of G = simple C reps L of G

» then appear with multiplicity dim L:
EVit, ... EVi1, o EVidimLs - EVidimL

dim L dim L

» are given by the _ (xL = character of L)

EVii+ ...+ EVidimL = ZXL(E,’)
ges

Class | 1 2 3
size | 1 3 2
Order | 1 2 3

§ ={(12), (123)} Toaac
p =3 12

{., 0 , 0'0’_1’_1 } X.3 + 2 0 -1



Different Cayley graphs

S ={(12),(123)}

S ={(12),(23)}

B -2, 1111}

Different graphs, different eigenvalues but - patterns



| hope that was of some help.



