Or: Randomness rocks!

Algorithm + random = ?

- Output
lapat Algorithm — P

(a) Deterministic algorithm structure

Output
Input Algorithm 5P

I

Random Input

(b) Randomized algorithm structure

» Algorithm A deterministic procedure
» Random The opposite ;-)

» Randomized algorithm A degree of randomness in an deterministic procedure

Quicksort

Pivot

Lofofsfzfefele]1]o]

» [Goal Sort a set X
» Take a pivot p and divide into X(< p) and X(> p) Divide

» Repeat with X(< p) and X(> p) |Conquer

Pick a random pivot

{10, 80, 30, 90, 40, 50.
Aionz@\
70 (Last element)
{10, 30, 40, . {90‘
Partition 'iTOUlV \ Partition arot
50

{10, 30, @ {1} {90}
Partition/ .

around

ao {10, {3}

/ Partition
around 30
{10y {}

» Best/worst case scenario Divide into two equally sized sets resp. as above

» Idea: Choose a pivot randomly!

» In this way one ends in the average situation most of the time

Enter, the theorem

Take a set X with n elements
The expected-case resp. worst-case time of randomized quicksort is

O(nlog n) resp. O(n?)

» The average-case resp. worst-case time of plain quicksort is
O(nlog n) resp. O(n?)

=- good average-case performance but not good worst-case performance

» The difference?
(a) Average = on random input

(b) Expected = on every input with large probability
» Making the algorithm probabilistic gives more control over the running time

» Randomizing algorithms works way more general than for quicksort

The smallest-circle problem

$
+
R
+ ¢ + &
+ + 8 &
+
E . +
+ 4%e +
4
4 * 00
e 3
L 4 + *

algorithm welzl is
input: Finite sets P and R of points in the plane |R| = 3.
output: Minimal disk enclosing P with R on the boundary.

if P is empty or |R| = 3 then
return trivial(R)
choose p in P (randomly and uniformly)
D := welzU(P - {p}. R)
if p is in D then
return D

return welzl(P - {p}, R v {p})

» Goal Find the smallest circle surrounding given points X

» Take randomly p and find the smallest circle for X \ {p} 'recursively

» The expect run time is O(n)

| hope that was of some help.

