What are...p-adic integers?

Or: Climbing infinite trees

p-adic integers \mathbb{Z}_p are walks from the root to a leaf

Distance of walks in a tree

We have a tree metric $d(a,b) = 1/p^k$ with

k =distance of the first branching point to the root

Metric? Check! Addition 7-adically? Check!

Ansatz: 7-adic numbers are $(...a_2a_1a_0)_7$ for $a_k \in \{0,...,6 = 7 - 1\}$

Addition of ...2514137 and ...1211027

Carry	 1					
	 2	5	1	4	1	3
+	 1	2	1	1	0	2
	 4	7 = 0	2	5	1	5

What about $n \in \mathbb{Z}$? Apply subtraction from elementary arithmetic :

Carry		1	1	1	1	1	
		0	0	0	0	0	0
		0	0	0	0	0	1
		6	6	6	6	6	6

 $-1 = ...666666_7$ in analogy to $1 = 0.9999999..._10$

Enter, the theorem

p-adic integers \mathbb{Z}_p and numbers \mathbb{Q}_p exist via the equivalent definitions

- (a) $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n\mathbb{Z}$ and \mathbb{Q}_p is its field of fractions Algebra
- (b) $\mathbb{Q}_p = \frac{\text{(Cauchy sequences in } \mathbb{Q} \text{ wrt } d)}{\text{(Nil sequences in } \mathbb{Q} \text{ wrt } d)}$ and \mathbb{Z}_p is its ring of integers Analysis $\mathbb{R} = \frac{\text{(Cauchy sequences in } \mathbb{Q} \text{ wrt } d)}{\text{(Nil sequences in } \mathbb{Q} \text{ wrt } d)} \text{ for the standard metric } \text{Analogy}$

Theorem (local-global). Let $f \in \mathbb{Q}[X_1,...,X_n]$ be nice

- (a) If f=0 holds in $\mathbb Q$, then it holds in $\mathbb R$ and $\mathbb Q_p$ for all p globalightarrowlocal
- (b) If f=0 holds in $\mathbb R$ and $\mathbb Q_p$ for all p, then it holds in $\mathbb Q$ local \to global

Newton and $\sqrt{2}$ in *p*-adics

Solution by Newton's method of $x^2 - 2 = 0$ Suggestions: $(p, x_0) = (7, 3), (7, 4), (17, 6), (17, 11), (23, 5), (23, 18), (31, 8), (31, 23)$

n	Xn	x_n as fraction	x _n as p-adic	check: x_n^2 as p-adic
0	3	3	3 ₇	12 ₇
1	1.833- 33	<u>11</u> 6	111111111111111113.0 ₇	32065432065432102.0 ₇
2	1.462- 12	<u>193</u> 132	33062113523306213.0 ₇	15156400343310002.0 ₇
3	1.415	<u>72 097</u> 50 952	01623525321216213.07	06010335100000002.07
4	1.414- 21	10 390 190 017 7 346 972 688	02011266421216213.0 ₇	100000000000000002.0 ₇

 $\sqrt{2}\approx...216213.0_7$ 7-adically

Thank you for your attention!

I hope that was of some help.