What is...the drunken bird constant?

Or: Coming home, or not...?

1d random walk

A random walk:

The distribution of

- 1d random walk $=$ take a step left $/$ right with probability $1 / 2$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this convinces one quickly that $p_{\text {home }}=1$

2d random walk

A random walk:

The distribution of how far one is from home

- 2 d random walk $=$ take a step left $/$ right $/$ up $/$ down with probability $1 / 4$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this gives a quite ambiguous result

A random walk:

- 3 d random walk $=$ take a step left / right / up / down / in / out with probability $1 / 6$
- Question What is the probability $p_{\text {home }}$ of return to the origin (=home)?
- Plotting this convinces one quickly that $p_{\text {home }}<1$

Enter, the theorem

We get the following $p_{\text {home }}$ for $\operatorname{dim} d>2$:

$$
p_{\text {home }}=1-1 / u(d)
$$

with

$$
u(d)=\frac{d}{(2 \pi)^{d}} \int_{-\pi}^{\pi} \ldots \int_{-\pi}^{\pi} \frac{1}{d-\cos x_{1}-\ldots-\cos x_{d}} d x_{1} \ldots d x_{d}
$$

- For $d=3$ the formula is

$$
u(3)=\frac{3}{(2 \pi)^{3}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{3-\cos x-\cos y-\cos z} d x d y d z
$$

Coming home? $d=1,2$ are special, and

$$
p_{\text {home }}=1 \text { for } d=1,2
$$

Coming home?

- Above dim on the x-axis, $p_{\text {home }}$ on the y-axis
- The formula on the previous slide does not work for $d=1,2$
- But it kind of works for $d=1$

Thank you for your attention!

I hope that was of some help.

