
What is...the else function?

Or: Counting else



Recursion

▶ Recursion = something that calls itself

▶ Example f (0) = 1 and f (n) = n · f (n − 1) for n > 0

▶ Recursion is often very efficient



Else

▶ Else function :

Algorithm The Else function Else(x , y , z):

1: if x ≤ y then
2: return y
3: else
4: return Else(Else(x − 1, y , z),Else(y − 1, z , x),Else(z − 1, x , y))
5: end if

▶ The function essentially consists of else only



Recursion only...?

▶ Count else Let T (x , y , z) = number of times the else clause is invoked

Tn = T (n, 0, n + 1)

▶ Example T2 = 4:

Else(2, 0, 3) = Else(Else(1, 0, 3),Else(−1, 3, 2),Else(2, 2, 1)) 1 else

= Else(Else(1, 0, 3), 3, 2)

Else(1, 0, 3) = Else(Else(0, 0, 3),Else(−1, 3, 1),Else(2, 1, 0)) 1 else

= Else(0, 3,Else(2, 1, 0))

Else(2, 1, 0) = Else(Else(1, 1, 0),Else(0, 0, 2),Else(−1, 2, 1)) 1 else

= Else(1, 0, 2)

Else(1, 0, 2) = Else(Else(0, 0, 2),Else(−1, 2, 1),Else(1, 1, 0)) 1 else

= Else(0, 2, 1) = 2



Enter, the theorem

We get the following asymptotic formula :

Tn ∼ C · Bn · exp(1/2 ·W (n)2)

▶ B(n) = Bell numbers = number of partitions of a set of size n Grow fast

B(n) ≫ exp(n) :

▶ W (n) = Lambert’s W function (grows roughly as log(n) – ignore )

▶ C ≈ 2.2394331040...



Comparing computation speeds

timeline

of LISP

dialects

:

▶ Else was developed ∼1978 to compare the speeds of LISP systems

▶ The point It can run a long time without creating large numbers etc.

▶ Later ∼1991 it was then studied as a sequence



Thank you for your attention!

I hope that was of some help.


