## What is...the else function?

## Or: Counting else



- Recursion = something that calls itself
- Example $f(0)=1$ and $f(n)=n \cdot f(n-1)$ for $n>0$ Pseudocode (recursive):

```
function factorial is:
input: integer n such that n >= 0
output: [n }\times(n-1)\times(n-2)\times\ldots\times1
1. if \(n\) is 0 , return 1
2. otherwise, return [ \(n \times\) factorial( \(n-1\) ) ]
end factorial
```

- Recursion is often very efficient


## Else



- Else function:

Algorithm The Else function $\operatorname{Else}(x, y, z)$ :
1: if $x \leq y$ then
2: return $y$
3: else
4: return $\operatorname{Else}(\operatorname{Else}(x-1, y, z), \operatorname{Else}(y-1, z, x), \operatorname{Else}(z-1, x, y))$
5: end if

- The function essentially consists of else only


## Recursion only...?

[Takeuchi 1978] Ikuo Takeuchi. On a Recursive Function That Does Almost Recursion Only. Memorandum, Musahino Electrical Communication Laboratory, Nippon Telephone and Telegraph Co., Tokyo, 1978.

- Count else Let $T(x, y, z)=$ number of times the else clause is invoked

$$
T_{n}=T(n, 0, n+1)
$$

Example $T_{2}=4$ :
$\operatorname{Else}(2,0,3)=\operatorname{Else}(\operatorname{Else}(1,0,3), \operatorname{Else}(-1,3,2), \operatorname{Else}(2,2,1)) \quad 1$ else $=\operatorname{Else}(E l s e(1,0,3), 3,2)$
$\operatorname{Else}(1,0,3)=\operatorname{Else}(\operatorname{Else}(0,0,3), \operatorname{Else}(-1,3,1), \operatorname{Else}(2,1,0)) \quad 1$ else $=\operatorname{Else}(0,3, \operatorname{Else}(2,1,0))$
$\operatorname{Else}(2,1,0)=\operatorname{Else}(\operatorname{Else}(1,1,0), \operatorname{Else}(0,0,2), \operatorname{Else}(-1,2,1)) \quad 1$ else $=\operatorname{Else}(1,0,2)$
$\operatorname{Else}(1,0,2)=\operatorname{Else}(\operatorname{Else}(0,0,2), \operatorname{Else}(-1,2,1), \operatorname{Else}(1,1,0)) \quad 1$ else

$$
=\operatorname{Else}(0,2,1)=2
$$

## Enter, the theorem

We get the following asymptotic formula :

$$
T_{n} \sim C \cdot B_{n} \cdot \exp \left(1 / 2 \cdot W(n)^{2}\right)
$$

- $B(n)=$ Bell numbers $=$ number of partitions of a set of size $n$ Grow fast

- $W(n)=$ Lambert's $W$ function (grows roughly as $\log (n)$ - ignore )
$-C \approx 2.2394331040 \ldots$

Comparing computation speeds


- Else was developed ~1978 to compare the speeds of LISP systems
- The point It can run a long time without creating large numbers etc.
- Later $\sim 1991$ it was then studied as a sequence

Thank you for your attention!

I hope that was of some help.

