What are...multiplicative compositions?

Or: Additive < multiplicative

Partitions and compositions

- (Integer) partition = an ordered way of writing an integer as a sum of positive integers, e.g. $4=2+1+1$
- (Integer) compositions $=$ the same but without order, e.g. $4=1+2+1$
- Counting them is a classical topic in mathematics

Lets count them!

- Proof without words (above): the number of compositions of n is 2^{n-1}
- More difficult : the number of partitions $p(n)$ is

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) \text { as } n \rightarrow \infty \text { Like it! }
$$

In 1937, Hans Rademacher found a way to represent the partition function $p(n)$ by the convergent series

$$
\begin{aligned}
& p(n)=\frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} A_{k}(n) \sqrt{k} \cdot \frac{d}{d n}\left(\frac{1}{\sqrt{n-\frac{1}{24}}} \sinh \left[\frac{\pi}{k} \sqrt{\frac{2}{3}\left(n-\frac{1}{24}\right)}\right]\right) \\
& \text { Wo we like this one? } \\
& \text { Well.. }
\end{aligned}
$$

We like the asymptotic \sim formula!

$$
f(n) \sim g(n) \text { if } \lim _{n \rightarrow \infty} f(n) / g(n)=1
$$

$$
A_{k}(n)=\sum_{0 \leq m<k,(m, k)=1} e^{\pi i(s(m, k)-2 n m / k)}
$$

Enter: Multiplication

- Multiplicative partition = an ordered way of writing an integer as a product of positive integers ≥ 2, e.g. $12=3 \cdot 2 \cdot 2$
- Multiplicative compositions $=$ the same but without order, e.g. $12=2 \cdot 3 \cdot 2$
- Task Count them!

Enter, the theorem

We get the following asymptotic formulas:

$$
\sum_{k=1}^{n} m(k) \sim n \cdot \frac{1}{2 \pi} \exp (2 \sqrt{\ln (n)}) \ln (n)^{-3 / 4}
$$

$$
\sum_{k=1}^{n} M(k) \sim(0.311736521 \ldots) n^{1.7286472389 . .}
$$

- $m(n)=$ mult. partitions, $M(n)=$ mult. compositions
- The exponent $\rho \approx 1.7286472389$ is the unique solution of $\zeta(x)=2$ with $x>1$

Where are they?

We know a lot about bacteria that grow nicely in a Petri plate; what about the rest?

- Additive partitions/compositions are everywhere in mathematics
- Multiplicative partitions/compositions are where precisely?

Thank you for your attention!

I hope that was of some help.

