What is...Golomb-Dickman's constant?

Or: Cycles and primes

Factoring integers

- Prime factorization (PF) $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$
- Precise properties of PF are often nasty, but statistical answers are often nice
- Example question What is the average size of the largest prime factor of n ?

Factoring permutations

- Cycle factorization (CF) permutation of $\{1, \ldots, n\}=$ product of cycles
- Precise properties of CF are often nasty, but statistical answers are often nice
- Example question What is the average size of the largest cycle in S_{n} (= permutations of $\{1, \ldots, n\})$?

Computer talk

- Top The average largest prime factor of n (in digit length)
- Bottom The average length of a longest cycle in S_{1000}

Enter, the theorem

The counts come out as the same

$$
\lambda=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=2}^{n} \frac{1}{\log k} \log P_{1}(k)
$$

$$
\lambda=\lim _{n \rightarrow \infty} \frac{1}{n} a_{n}
$$

- $P_{1}(k)$ is the largest prime factor of k
- $a_{n}=$ the average of the length of the longest cycle in each permutation in S_{n}
- $\lambda \approx 0.62$, so the average longest cycle makes up 62% of the maximal length, and ditto for PF (in digits)

Average size of largest prime factor for 10000 randomly selected numbers in $\{10000000,20000000\}$:

The prime number theorem...kind of...

- We even have a precise formula :

$$
\lambda=\int_{0}^{1} e^{L i(t)} d t
$$

- Li(t) $=\int_{2}^{t} 1 / \ln (x) d x$ is the logarithmic integral

Thank you for your attention!

I hope that was of some help.

