
What is...Golomb–Dickman’s constant?

Or: Cycles and primes



Factoring integers

▶ Prime factorization (PF) n = pa11 ...pakk

▶ Precise properties of PF are often nasty , but statistical answers are often nice

▶ Example question What is the average size of the largest prime factor of n?



Factoring permutations

▶ Cycle factorization (CF) permutation of {1, ..., n} = product of cycles

▶ Precise properties of CF are often nasty , but statistical answers are often nice

▶ Example question What is the average size of the largest cycle in Sn (=

permutations of {1, ..., n})?



Computer talk
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▶ Top The average largest prime factor of n (in digit length)

▶ Bottom The average length of a longest cycle in S1000



Enter, the theorem

The counts come out as the same

λ = limn→∞
1
n

∑n
k=2

1
log k logP1(k)

λ = limn→∞
1
nan

▶ P1(k) is the largest prime factor of k

▶ an = the average of the length of the longest cycle in each permutation in Sn

▶ λ ≈ 0.62, so the average longest cycle makes up 62% of the maximal length,
and ditto for PF (in digits)

Average size of largest prime factor for 10000 randomly selected numbers in {10000000, 20000000}:
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The prime number theorem...kind of...

▶ We even have a precise formula :

λ =
∫ 1

0
eLi(t)dt

▶ Li(t) =
∫ t

2
1/ ln(x)dx is the logarithmic integral



Thank you for your attention!

I hope that was of some help.


