What is...counting of abelian groups?

Or: Commutative = easy

The gnu function

Finite groups are kind of random...

A000001 Number of groups of order n.

(Formerly M0098 N0035)
$0,1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1$, $51,1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,13,1$, $2,4,267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1,15,1,2,1,12,1,10,1$,

- Groups of order $n=$ symmetries with n operations
- The gnu function $\operatorname{gnu}(n)=$ number of different groups of size n
- Problem We know next to nothing about gnu(n)

The agnu function

$1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1$,
$1,1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,2$
$2,4,1,1,1,3,1,1,1$ (list; graph; refs; listen; history; text; internal format)

Abelian groups of order $n=$ symmetries with n commuting operations
The agnu function $\operatorname{agnu}(n)=$ number of different abelian groups of size n
Task Describe agnu(n)

A first answer

Chinese reminder theorem gives:

$$
\begin{array}{rc}
\mathbb{Z} / 1 \mathbb{Z} & 1 \\
\mathbb{Z} / 2 \mathbb{Z} & 1 \\
\mathbb{Z} / 3 \mathbb{Z} & 1 \\
\mathbb{Z} / 4 \mathbb{Z} \not \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & 2 \\
\mathbb{Z} / 5 \mathbb{Z} & 1 \\
\mathbb{Z} / 6 \mathbb{Z} \stackrel{ }{\rightrightarrows} \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, 1 \mapsto(1,1) & 1 \\
\mathbb{Z} / 7 \mathbb{Z} & 1 \\
\mathbb{Z} / 8 \mathbb{Z} \nsubseteq \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \not \approx \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & 3
\end{array}
$$

Chinese reminder theorem gives a classification of finite abelian groups

- The count comes out as follows; $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ prime factorization, then:

$$
\operatorname{agnu}(n)=P\left(a_{1}\right) \ldots P\left(a_{k}\right) \text { with } P(a)=\text { number of partitions of a }
$$

- Example $\operatorname{agnu}(1200)=\operatorname{agnu}\left(2^{4} 3^{1} 5^{2}\right)=P(4) P(1) P(2)=5 \cdot 1 \cdot 2=10$

Enter, the theorem

The average number of abelian groups of a given order is

$$
\prod_{j \geq 2} \zeta(j) \approx 2.29485659
$$

- For general finite groups something similar is probably out of reach - ζ is the (Riemann) zeta function
- Average is in the sense of arithmetic mean

Semisimple rings

These have at least one ring structure (the one you get from $\mathbb{Z} / p^{k} \mathbb{Z}$):

Chinese reminder theorem gives:

$\mathbb{Z} / 1 \mathbb{Z}$	1
$\mathbb{Z} / 2 \mathbb{Z}$	1
$\mathbb{Z} / 3 \mathbb{Z}$	1
$\mathbb{Z} / 4 \mathbb{Z} \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	2
$\mathbb{Z} / 5 \mathbb{Z}$	1
$\mathbb{Z} / 6 \mathbb{Z} \cong \stackrel{\mathbb{Z}}{\leftrightarrows} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, 1 \mapsto(1,1)$	1
$\mathbb{Z} / 7 \mathbb{Z}$	1
$\mathbb{Z} / 8 \mathbb{Z} \neq \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	3

- Every abelian group has at least one ring structure
- The average number of semisimple rings is

$$
\prod_{r m^{2}>1} \zeta\left(r m^{2}\right) \approx 2.49961611
$$

- This number is not much bigger than the average number of abelian groups
- Semisimple $=$ matrix rings

Thank you for your attention!

I hope that was of some help.

