Or: Commutative = easy



The gnu function

Finite groups are kind of random...
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» Groups of order nn = symmetries with n operations

» The gnu function gnu(n) = number of different groups of size n

» Problem We know next to nothing about gnu(n)



The agnu function

A000688  Number of Abehan groups of order n; number of factorizations of n into =
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» Abelian groups of order n| = symmetries with n commuting operations
» The agnu function agnu(n) = number of different abelian groups of size n

» Task Describe agnu(n)



A first answer

Chinese reminder theorem gives:

717

7.)2Z

7./3Z

ZJAZ % 7./27 x 7./ 2T

7./57.

7)67 =5 7.J2Z x 7/3Z,1 + (1,1)

7)7Z

7./87. % TJAZ x 1.)27. % 7,/27. x L./27 x 7./2Z.

> _ gives a classification of finite abelian groups

» The count comes out as follows; n = p{*...p* prime factorization, then:

> [BEMBIE] 2gnu(1200) = agnu(243'5?) = P(4)P(1)P(2) =5 -1-2 =10



Enter, the theorem

The average number of abelian groups of a given order is
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» For general finite groups something similar is probably 'out of reach

» ( is the (Riemann) _
» Average is in the sense of_



Semisimple rings
These have at least one ring structure (the one you get from Z/pZ):

Chinese reminder theorem gives:
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» Every abelian group has at least one ring structure

» The average number of 'semisimple rings is
[T, C(rm?) ~ 2.49961611

» This number is 'not much bigger than the average number of abelian groups

» Semisimple = matrix rings



| hope that was of some help.



