What is...the tree constant?

Or: Trees are difficult

Counting trees is difficult

- Tree $=$ a graph with out nontrivial cycles
- Counting trees is very difficult (i.e. there is probably no nice formula giving the number of trees with n vertices $T(n)$)
- Task Find a way to count them, while not counting them!

What is the growth of $T(n)$?

- Ansatz $T(n) \sim s(n) \cdot \lambda^{n}\left(f(n) \sim g(n) \Leftrightarrow \lim _{n \rightarrow \infty} f(n) / g(n)=1\right)$
- $\lambda=$ dominating growth \rightarrow find it!
- $s(n)=$ subexponential factor (we will ignore this one)

Generating functions

A generating function is a way of encoding an infinite sequence of numbers by treating them as the coefficients of a formal power series.

A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could be embarrassing,
we put them all in a bag, and then we have only one object to carry, the bag
(Pólya)

The rabbit counting a.k.a. Fibonacci numbers:

$$
g(z)=\frac{1}{1-z-z^{2}}=1 z^{0}+1 z^{1}+2 z^{2}+3 z^{3}+5 z^{4}+8 z^{5}+13 z^{6}+\ldots
$$

Generating function $=$ function with Taylor expansion giving a fixed sequence

- Example The generating function for the square numbers n^{2} is $g(z)=\frac{z(z+1)}{(1-z)^{3}}$

Fantastic fact Radius of convergence $g(z)=$ dominating growth ${ }^{-1}$ (unless the problem is crazy)

Enter, the theorem

The tree constant $=$ dominating growth rate is

$$
\lambda \approx 2.9955765856
$$

- This can be proven by studying the generating function $g(z)$:
λ^{-1} is the radius of convergence of $g(z)$
- $g(z)$ is given by functional equation that is a bit annoying to write down, see A000055 on OEIS for details

The real growth rate

- We actually have

$$
T(n) \sim \beta \cdot n^{-5 / 2} \cdot \lambda^{n}
$$

- Here $\beta \approx 0.5349496061$ is a scalar computable from λ
- The point This can also be derived from the generating function (skipped)

Thank you for your attention!

I hope that was of some help.

