Or: Trees are difficult



Counting trees is difficult
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» Tree = a graph with out nontrivial cycles

e
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» Counting trees is very difficult (i.e. there is probably no nice formula giving
the number of trees with n vertices T(n))

» Task Find a way to count them, while not counting them!



What is the growth of T(n)?
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> [Ansatz T(n) ~ s(n) - A" (7(n) ~ 2(n) = lim, . F(n)/g(n) = 1)

» A\ = dominating growth — find it!

> s(n) = _ (we will ignore this one)



Generating functions

A generating function is a way of encoding an infinite sequence of numbers by
treating them as the coefficients of a formal power series.

The rabbit counting a.k.a. Fibonacci numbers:
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> _ = function with Taylor expansion giving a fixed sequence

» Example The generating function for the square numbers n? is g(z) = ﬁz_—t;g.);

> Radius of convergence g(z) = dominating growth ~! (unless

the problem is crazy)



Enter, the theorem

The tree constant = dominating growth rate is
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» This can be proven by studying the generating function g(z):

that is a bit annoying to write down, see

> g(z) is given by
A000055 on OEIS for details



The real growth rate
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» We actually have
T(n)~B-n=5/2. A
» Here 8 ~ 0.5349496061 is a scalar computable from A

» The point This can also be derived from the generating function



| hope that was of some help.



