What are...Dehn invariants?

Or: Cutting polyhedra

- Take two polyhedra of the same area/volume/4d volume/...
- Question Can we cut and reassemble one into the other?
- Known since 1800 ish The answer is "Yes" in dimension 2

Hilbert's third problem

- In 1900 Hilbert gave very influential 23 problems for the 20th century
- One of them is the question from the previous slide (in fact, the original question was slightly different)
- Example Can one rearrange the cube into the other platonic solids?

- In 2d geometry the formulas for the area of the basic polyhedral shapes have nice=geometry proofs
- In 3d geometry the formulas for the volumes of the basic polyhedral shapes have usually not so nice=analytic proofs
- Hilbert's question $\mathrm{m} \rightarrow$ Is it impossible to always have nice proofs?

Enter, the theorem

There exist invariants $D\left(P_{i}\right)$ for any polyhedron P_{i} such that:
(i) P_{1}, P_{2} can be cut + reassemble into one another $\Rightarrow\left(D\left(P_{1}\right)=D\left(P_{2}\right)\right)$ Dehn
(ii) $\left(D\left(P_{1}\right)=D\left(P_{2}\right)\right) \Rightarrow P_{1}, P_{2}$ can be cut + reassemble into one another Sydler Here we assume that the polyhedra we consider have the same volume

- Example We have

- This implies that Hilbert was right (that is, it is not possible)

Two tetrahedron + octahedron $=2$ cubes

- The Dehn-Sydler theorem is an if and only if theorem
- Example We have

$$
2 \cdot D(\boxtimes)+D(\longleftrightarrow)=D(凹)
$$

and indeed one can build them from one another

Thank you for your attention!

I hope that was of some help.

