What are...Dehn invariants?

Or: Cutting polyhedra

Playing with scissors

- ► Take two polyhedra of the same area/volume/4d volume/...
- Question Can we cut and reassemble one into the other?
- ► Known since 1800ish The answer is "Yes" in dimension 2

Hilbert's third problem

- ► In 1900 Hilbert gave very influential 23 problems for the 20th century
- One of them is the question from the previous slide (in fact, the original question was slightly different)
 - Example Can one rearrange the cube into the other platonic solids?

No one likes calculus...!?

- In 2d geometry the formulas for the area of the basic polyhedral shapes have nice=geometry proofs
- In 3d geometry the formulas for the volumes of the basic polyhedral shapes have usually not so nice=analytic proofs
- ► Hilbert's question ↔ Is it impossible to always have nice proofs?

There exist invariants $D(P_i)$ for any polyhedron P_i such that: (i) P_1 , P_2 can be cut + reassemble into one another $\Rightarrow (D(P_1) = D(P_2))$ Dehn (ii) $(D(P_1) = D(P_2)) \Rightarrow P_1$, P_2 can be cut + reassemble into one another Sydler Here we assume that the polyhedra we consider have the same volume

This implies that Hilbert was right (that is, it is not possible)

Two tetrahedron + octahedron = 2 cubes

► The Dehn–Sydler theorem is an if and only if theorem

Example We have

$$2 \cdot D\left(\checkmark \right) + D\left(\checkmark \right) = D\left(\checkmark \right)$$

and indeed one can build them from one another

Thank you for your attention!

I hope that was of some help.