What is...the Gelfond-Schneider?

Or: Logarithms and transcendence

Transcendental numbers $=$ beyond polynomial

The Gelfond-Schneider constant or Hilbert number ${ }^{[1]}$ is two to the power of the square root of two: $2^{\sqrt{2}}=2.6651441426902251886502972498731 \ldots$

- Roots of polynomials in $\mathbb{Q}[x]$ are called algebraic
- Transcendental number $=$ not algebraic (e.g. $2^{\sqrt{2}}$ above is transcendental)
- Proving that a number is transcendental is a classical and difficult problem
- Almost all numbers are transcendental, but proving that a specific one is transcendental is the real meat

Hilbert's seventh problem

HBA Lecture Notes in Mathematics
 IMSc Lecture Notes in Mathenatics

Are the following

Hilbert's
Seventh
Problem
Solutions and Extensions
transcendental?

$$
\begin{gathered}
2^{\sqrt{2}} \\
e^{\pi}=(-1)^{-i} \\
\log 2 / \log 3
\end{gathered}
$$

- In 1900 Hilbert gave very influential 23 problems for the 20th century
- One of them is:

For a, b algebraic, b irrational, is a^{b} transcendental?
Equivalently,
For a, b nonzero algebraic, $\log a / \log b$ is either rational or transcendental?

Logarithms generate transcendental numbers

- Idea $\log _{p}$ a for $a \in \mathbb{Z}_{>1}, p$ prime should be transcendental if and only if $a=p^{k}$
- Examples

$$
\begin{gathered}
\log _{2} 2=1 \\
\log _{2} 3 \approx 1.584962501 \\
\log _{2} 4=2 \\
\log _{2} 5 \approx 2.321928095 \\
\log _{2} 6 \approx 2.584962501
\end{gathered}
$$

Enter, the theorem

Hilbert's seventh problem is true

- Transcendence of many numbers remains open

Numbers which have yet to be proven to be either transcendental or algebraic:

- Most sums, products, powers, etc. of the number π and the number e, e.g. $e \pi, e+\pi, \pi-e, \pi / e, \pi^{\pi}, e^{e}, \pi^{e}, \pi^{\sqrt{2}}, e^{\pi^{2}}$ are not known to be rational, algebraically irrational or transcendental. A notable exception is $e^{\pi \sqrt{n}}$ (for any positive integer n) which has been proven transcendental. ${ }^{[56]}$ It has been shown that both $e+\pi$ and π / e do not satisfy any polynomial equation of degree ≤ 8 and integer coefficients of average size 10^{9}.[57]
- The Euler-Mascheroni constant $\gamma: \ln 2010$ M. Ram Murty and N. Saradha found an infinite list of numbers containing $\frac{\gamma}{4}$ such that all but at most one of them are transcendental. ${ }^{[58][59]}$ In 2012 it was shown that at least one of y and the Euler-Gompertz constant δ is transcendental.[60]
- Apéry's constant $\zeta(3)$ (whose irrationality was proved by Apéry).
- The reciprocal Fibonacci constant and reciprocal Lucas constant ${ }^{[61]}$ (both of which have been proved to be irrational).
- Catalan's constant, and the values of Dirichlet beta function at other even integers, $\beta(4), \beta(6), \ldots$ (not even proven to be irrational). [62]
- Khinchin's constant, also not proven to be irrational.
- The Riemann zeta function at other odd positive integers, $\zeta(5), \zeta(7), \ldots$ (not proven to be irrational).
- The Feigenbaum constants δ and a, also not proven to be irrational.
- Mills' constant and twin prime constant (also not proven to be irrational).
- The cube super-root of any natural number is either an integer or irrational (by the Gelfond-Schneider theorem). [63] However, it is still unclear if the irrational numbers in the later case are all transcendental. [citation needed]
- The second and later eigenvalues of the Gauss-Kuzmin-Wirsing operator, also not proven to be irrational.
- The Copeland-Erdös constant, formed by concatenating the decimal representations of the prime numbers.
- The relative density of regular prime numbers: in 1964, Siegel conjectured that its value is $e^{-1 / 2}$.
- $\Gamma(1 / 5)$ has not been proven to be irrational. ${ }^{[25]}$
- Various constants whose value is not known with high precision, such as the Landau's constant and the Grothendieck constant.

The Lindemann-Weierstrass theorem

- Transcendental number generator:

$$
F(\text { non silly algebraic })=\text { transcendental }
$$

- The e^{x} and the natural logarithm is also a transcendental number generators
- This was known much earlier (~ 1885) and shows e.g.:

$$
e=e^{1} \text { is transcendental }
$$

π is transcendental since $e^{\pi i}=-1$ is not

Thank you for your attention!

I hope that was of some help.

