What is...the Gelfond–Schneider?

Or: Logarithms and transcendence

Transcendental numbers = beyond polynomial

The **Gelfond-Schneider constant** or **Hilbert number**^[1] is two to the power of the square root of two:

 $2^{\sqrt{2}} = 2.665\,144\,142\,690\,225\,188\,650\,297\,249\,8731...$

• Roots of polynomials in $\mathbb{Q}[x]$ are called algebraic

Transcendental number = not algebraic (e.g. $2^{\sqrt{2}}$ above is transcendental)

- Proving that a number is transcendental is a classical and difficult problem
- Almost all numbers are transcendental, but proving that a specific one is transcendental is the real meat

Hilbert's seventh problem

Equivalently,

For a, b nonzero algebraic, $\log a / \log b$ is either rational or transcendental?

Logarithms generate transcendental numbers

Idea log_p a for a ∈ Z_{>1}, p prime should be transcendental if and only if a = p^k
 Examples

$$\begin{split} \log_2 2 &= 1 \\ \log_2 3 &\approx 1.584962501 \\ \log_2 4 &= 2 \\ \log_2 5 &\approx 2.321928095 \\ \log_2 6 &\approx 2.584962501 \end{split}$$

Hilbert's seventh problem is true

► Transcendence of many numbers remains open :

Numbers which have yet to be proven to be either transcendental or algebraic:

- Most sums, products, powers, etc. of the number π and the number e, e.g. $e\pi$, $e + \pi$, πe , πle , π^{τ} , e^{e} , π^{e} , $\pi^{h} 2^{e}$, $e^{\pi^{2}}$, $e^{\pi^{2}}$ are not known to be rational, algebraically irrational or transcendental. A notable exception is $e^{\pi T}\pi$ (for any positive integer n) which has been proven transcendental.^[56] It has been shown that both $e + \pi$ and πle do not satisfy any polynomial equation of degree ≤ 8 and integer coefficients of average size 10^{9} .^[57]
- The Euler-Mascheroni constant y: In 2010 M. Ram Murty and N. Saradha found an infinite list of numbers containing $\frac{y}{4}$ such that all but at most one of them are transcendental.^{[58][59]} In 2012 it was shown that at least one of y and the Euler-Gompertz constant δ is transcendental.^[60]
- Apéry's constant $\zeta(3)$ (whose irrationality was proved by Apéry).
- The reciprocal Fibonacci constant and reciprocal Lucas constant^[61] (both of which have been proved to be irrational).
- Catalan's constant, and the values of Dirichlet beta function at other even integers, $\beta(4)$, $\beta(6)$, ... (not even proven to be irrational).^[62]
- Khinchin's constant, also not proven to be irrational.
- The Riemann zeta function at other odd positive integers, $\zeta(5)$, $\zeta(7)$, ... (not proven to be irrational).
- The Feigenbaum constants δ and a, also not proven to be irrational.
- Mills' constant and twin prime constant (also not proven to be irrational).
- The cube super-root of any natural number is either an integer or irrational (by the Gelfond-Schneider theorem). ^[63]
 However, it is still unclear if the irrational numbers in the later case are all transcendental. ^[citation needed]
- The second and later eigenvalues of the Gauss-Kuzmin-Wirsing operator, also not proven to be irrational.
- The Copeland-Erdős constant, formed by concatenating the decimal representations of the prime numbers.
- The relative density of regular prime numbers: in 1964, Siegel conjectured that its value is $e^{-1/2}$.
- $\Gamma(1/5)$ has not been proven to be irrational.^[25]
- Various constants whose value is not known with high precision, such as the Landau's constant and the Grothendieck constant.

The Lindemann–Weierstrass theorem

► Transcendental number generator:

$$F(\text{non silly algebraic}) = \text{transcendental}$$

 \blacktriangleright The e^x and the natural logarithm is also a transcendental number generators

▶ This was known much earlier (\sim 1885) and shows e.g.:

 $e = e^1$ is transcendental

 π is transcendental since $e^{\pi i} = -1$ is not

Thank you for your attention!

I hope that was of some help.