What is...Hilbert's Satz 90?

Or: Number 90 is it!

Zahlbericht

Die Theorie
der
algebraischen Zahlkörper.
1897
Bericht,
erstattet der Deutschen Mathematiker-Vereinigung
von

David Hilbert.

Satz 90. Jede ganze oder gebrochene Zahl \boldsymbol{A} in K, deren Relativnorm in Bezug auf k gleich 1 ist, wird die symbolische $(1-S)$ te Potenz einer gewissen ganzen Zahl \boldsymbol{B} des Körpers K.

- In the famous Zahlbericht (\approx report on numbers) Hilbert summarized algebraic number theory, and enriching and organizing the subject in ways that were to influence developments for decades
- The theorem we will see is number 90 in Hilbert's Zahlbericht

Pythagorean triples (PT)

- PT $=$ integer with $a^{2}+b^{2}=c^{2}=$ rational points (x, y) on the unit circle
- Solution $\exists m, n \in \mathbb{Z}$ such that $(x, y)=\left(m^{2}-n^{2}, 2 m n\right) /\left(m^{2}+n^{2}\right)$
- Question Where do the solutions come from?

Functional equations (FE)

Functional equations of the form	Possible Functions
$f(x y)=f(x)+f(y) ; x, y>0$	$f(x)=K \cdot \log _{a} x$
$f(x y)=f(x) \cdot f(y) ; x, y \in \mathrm{R}$	$f(x)=x^{n}$
$f(x y)=x \cdot f(y)+y \cdot f(x) ; x, y \in \mathbb{R}^{+}$	$f(x)=x \log x$
$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)} ; y \neq 0 ; f(y) \neq 0$	$f(x)=x^{n}$
$f(x+y)=f(x)+f(y)$	$f(x)=f(1) \cdot x$
$f(x+y)=f(x) \cdot f(y)$	$f(x)=[f(1)]^{x}$
$f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$	$f(x)=1 \pm x^{n}$

- Functional equations are everywhere but often difficult
- The function equation

$$
f(x) f(\zeta x) \ldots f\left(\zeta^{n-1} x\right)=1 \text { for } \zeta=\exp (2 \pi i / n)
$$

has nice solutions of the form

$$
f(x)=\frac{g(x)}{g(\zeta x)} \text { for } g \in \mathbb{C}(x)
$$

- Question

Where do the solutions come from?

Enter, the theorem

Consider the following

(i) E / F a finite cyclic field extension
(ii) σ a generator of $G a /(E / F)$ of order n
(iii) $\alpha \in E$ of relative norm 1, i.e. $\alpha \sigma(\alpha) \ldots \sigma^{n-1}(\alpha)=1$

Then we can express α rationally:

$$
\alpha=\beta / \sigma(\beta) \text { for } \beta \in E
$$

- PT example Take $\mathbb{Q}(i) / \mathbb{Q}, \sigma=$ complex conjugation

- FE example Take $\mathbb{C}(x) / \mathbb{C}\left(x^{n}\right), \sigma(x)=\zeta x$

Generalized PT

- One can also find solutions to the ellipse equation $x^{2}+D y^{2}=1$
- This follows by using $\mathbb{Q}(\sqrt{-D}) / \mathbb{Q}$ in Hilbert's Satz 90
- The solutions are then of the form $(x, y)=\left(m^{2}-D n^{2}, 2 m n\right) /\left(m^{2}+D n^{2}\right)$

Thank you for your attention!

I hope that was of some help.

