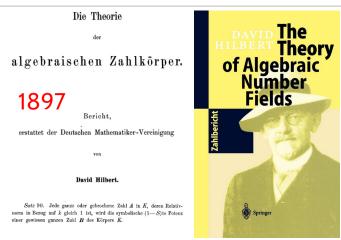
What is...Hilbert's Satz 90?

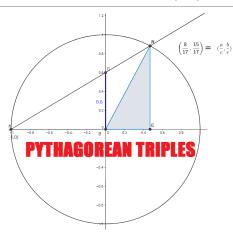
Or: Number 90 is it!

Zahlbericht



- ► In the famous Zahlbericht (≈ report on numbers) Hilbert summarized algebraic number theory, and enriching and organizing the subject in ways that were to influence developments for decades
- ► The theorem we will see is number 90 in Hilbert's Zahlbericht

Pythagorean triples (PT)



• PT = integer with $a^2 + b^2 = c^2$ = rational points (x, y) on the unit circle

Solution $\exists m, n \in \mathbb{Z}$ such that $(x, y) = (m^2 - n^2, 2mn)/(m^2 + n^2)$

Question Where do the solutions come from?

Functional equations (FE)

Functional equations of the form	Possible Functions
f(xy) = f(x) + f(y); x, y > 0	$f(x) = K \cdot \log_a x$
$f(xy) = f(x) \cdot f(y); x, y \in \mathbb{R}$	$f(x) = x^n$
$f(xy) = x \cdot f(y) + y \cdot f(x); x, y \in \mathbb{R}^+$	$f(x) = x \log x$
$f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}; y \neq 0; f(y) \neq 0$	$f(x) = x^n$
f(x+y) = f(x) + f(y)	$f(x) = f(1) \cdot x$
$f(x+y) = f(x) \cdot f(y)$	$f(x) = \left[f(1)\right]^x$
$f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$	$f(x) = 1 \pm x^n$

► Functional equations are everywhere but often difficult

► The function equation

$$f(x)f(\zeta x)...f(\zeta^{n-1}x) = 1$$
 for $\zeta = \exp(2\pi i/n)$

has nice solutions of the form

$$f(x) = rac{g(x)}{g(\zeta x)}$$
 for $g \in \mathbb{C}(x)$

Question Where do the solutions come from?

Consider the following

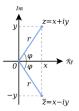
(i) E/F a finite cyclic field extension

(ii) σ a generator of Gal(E/F) of order n

(iii) $\alpha \in E$ of relative norm 1, i.e. $\alpha \sigma(\alpha)...\sigma^{n-1}(\alpha) = 1$ Then we can express α rationally:

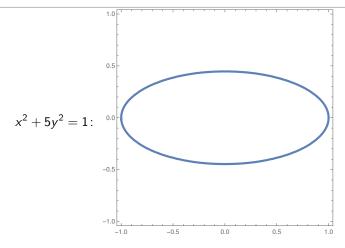
 $\alpha = \beta / \sigma(\beta)$ for $\beta \in E$

PT example Take $\mathbb{Q}(i)/\mathbb{Q}$, $\sigma =$ complex conjugation



FE example Take $\mathbb{C}(x)/\mathbb{C}(x^n)$, $\sigma(x) = \zeta x$

Generalized PT



- One can also find solutions to the ellipse equation $x^2 + Dy^2 = 1$
- ► This follows by using $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ in Hilbert's Satz 90

▶ The solutions are then of the form $(x, y) = (m^2 - Dn^2, 2mn)/(m^2 + Dn^2)$

Thank you for your attention!

I hope that was of some help.