What is...the Birch-Swinnerton-Dyer conjecture?

Or: Counting, of course

Rational solutions

PYTHAGOREAN TRIPLES

general Diophantine:

elliptic curves:

$$
y^{2}=x^{3}-x \quad y^{2}=x^{3}-x+1
$$

- Task Find integer/rational solutions to Diophantine equations
- Elliptic curves " $=$ " something of the form $y^{2}=x^{3}+a x+b$

Easier than general equations but still nontrivial

Counting $\bmod p$


```
> K<w> := FiniteField(2, 160); // finite field of size 2^160
> f<x> := MinimalPolynomial(w); f;
x^160 + x^5 + x^3 + x^2 + 1
> E := EllipticCurve([K| 1, 0, 0, 0, w]);
> time #E;
1461501637330902918203686141511652467686942715904
Time: 0.050
```

- $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}=$ integers modulo the prime p
- Finding points in \mathbb{F}_{p} of elliptic curves is easy
- Dream Use the solutions mod p to say something about the rational solutions

Elliptic groups

$P+Q+Q=0$
$P+Q+0=0$
$P+P+0=0$

- The above defines an abelian group structure on the rational points $E(\mathbb{Q})$ of an elliptic curve
- Fact $E(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus \bigoplus_{k} \mathbb{Z} / m_{k} \mathbb{Z}$ and surprisingly little is known about r
- Question Can one determine the rank r ?

Enter, the theorem

For an elliptic curve E of rank r setup the following:
(i) Let $N_{p}=$ number of points on E modulo p Easy to get
(ii) Set $f: \mathbb{N} \rightarrow \mathbb{Q}, x \mapsto \prod_{p \leq x} N_{p} / p$ Easy to get
(iii) Conjecture We have asymptotically $f \sim$ const. $\log (x)^{r}$
(iv) The conjecture is true if $r=0$

- Here is an example for $y^{2}=x^{3}-5$ (red=expected value, blue $=$ actual value):

- There is a more general version which is the actual conjecture

Analytic method

```
> n := 101000;
> S := [ p : p in [1..n] | IsPrime(p) ];
> X:= 1;
for p in S do
    ~N, E := IsEllinticCurve([GF(p) | 0, 1, 0, 0, 1 ]);
    if ok
    then X := X*#E/p;
        if p ge 100000 then
        print RealField(10)!X/Log(p);
        end if;
    end if;
> end for;
```

```
1.972420629
1.972243705
1.967074969
1.968638530
1.978595716
1.982372770
```

- The conjecture was born in the 1950s by computer help (and was one of the first conjectures coming from computer aid)
- Note that we can compute r from the asymptotic if the conjecture is true
- The conjecture addresses an algebraic question analytically

Thank you for your attention!

I hope that was of some help.

