What is...the Riemann hypothesis?

Or: Critical strip free (almost)

Counting primes - rough version

- Prime number function $\pi(n) = \#$ primes $\leq n$
- Counting primes precisely is very tricky as primes "pop up randomly"
- Question What is the leading growth of the number of primes?
- Answer There are roughly c(n)n for sublinear correction term c(n)

Counting primes - asymptotic version

- Asymptotically equal $f \sim g$ if $\lim_{n \to \infty} f(n)/g(n) \to 1$
- Logarithmic integral $Li(x) = \int_2^x 1/\ln(t) dt$
- Question What is the growth of the number of primes asymptotically?
- Answer We have $\pi(n) \sim n/\log(n) \sim Li(n)$

Counting primes - variance

- ► Asymptotically equal does not imply that the difference is good
- ► |f(n) g(n)| is a measurement of how goof the approximation is
- Question What is variance from the expected value Li(n)?
- Conjectural answer We have $|\pi(n) Li(n)| \in O(n^{1/2} \log n)$ or $|\pi(n) Li(n)| \le \frac{1}{8\pi} n^{1/2} \log n$ (for $n \ge 2657$)

Enter, the theorem

Then $|\pi(n) - Li(n)| \in O(n^{\beta} \log n)$

► $\zeta: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ is the Riemann zeta function and it is the meromorphic continuation of $s \mapsto \sum_{n=1}^{\infty} n^{-s}$

• The Riemann hypothesis conjectures that $\beta = 0.5$

Not quite the Riemann hypothesis

VII.

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.

(Monatsberichte der Berliner Akademie, November 1859.)

Durch Einsetzung dieser Werthe in den Ausdruck von f(x) erhält man

$$f(x) = Li(x) - \Sigma^{\alpha} \left(Li(x^{\frac{1}{2} - \alpha i}) + Li(x^{\frac{1}{2} - \alpha i}) + \int_{x}^{\infty} \frac{1}{x^{2} - 1} \frac{dx}{x \log x} + \log \xi(0), \right)$$

wenn in Σ^{α} für α sämmtliche positiven (oder einen positiven reellen Theil enthaltenden) Wurzeln der Gleichung $\xi(\alpha) = 0$, ihrer Grösse nach geordnet, gesetzt werden. Es lässt sich, mit Hülfe einer genaueren Discussion der Function ξ , leicht zeigen, dass bei dieser Anordnung der Werth der Reihe

► A bit more work shows $|\pi(n) - Li(n)| \le \frac{1}{8\pi} n^{1/2} \log n$ (for $n \ge 2657$)

Calling this the Riemann hypothesis is far fetched but I go for it anyway (sorry): its in the spirit of Riemann's paper and somewhat easier to understand Thank you for your attention!

I hope that was of some help.