What are...crystal graphs?

Or: Low temperature behavior

Lie algebras and their representations

- Lie algebras (over \mathbb{C}) \iff (first order approx. of) continuous symmetries
- ► Their representations ↔ vector spaces versions of continuous symmetries
- **Task** Find good models of (simple) Lie algebra representations

 $\mathfrak{sl}_3(\mathbb{C}) = \{ \text{complex 3-by-3 matrices with trace} = 0 \} \text{ with generators} :$

$$E_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$F_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, F_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$H_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$V = \{e_{1}, e_{2}, e_{3}\} + \text{matrix action}: \qquad \textbf{3} \xrightarrow{F_{2}, 1} \qquad \textbf{2} \xrightarrow{F_{1}, 1} \qquad \textbf{1}$$

► The Chevalley generators are "matrices" such as the ones above

 \blacktriangleright With these representations are labeled weighted graphs (above only E, Fs)

Problem These graphs get messy fast and are not super helpful

Crystals

• Crystal = labeled graph; one label for every F_i

• Idea The crystal of a representation is the graph of leading terms of the action of F_i , e.g.

$$F_i \bigcirc v_j = v_k + \text{friends} \Rightarrow \text{draw} \text{ an edge } v_j \rightarrow v_k$$

► Here is an example of a tensor product:

▶ Here connected components correspond to the tensor product decomposition

Temperature zero

Third Law of Thermodynamics

Entropy (S) of a pure crystal is zero as the temperature (T) approaches absolute zero

Big question How to define "leading term"?

- ► Trick There is a "quantum object" and a "canonical basis" where the action coefficients are in $\mathbb{Z}[q]$, e.g. $1 + 2q^2 + 2q^4 + q^6$
- Absolute zero Specializing q = 0 gives the leading term

Thank you for your attention!

I hope that was of some help.