What are...crystal graphs?

Or: Low temperature behavior

Lie algebras and their representations

- Lie algebras (over \mathbb{C}) \rightarrow (first order approx. of) continuous symmetries
- Their representations an vector spaces versions of continuous symmetries
- Task Find good models of (simple) Lie algebra representations

Generators and graphs

$\mathfrak{s l}_{3}(\mathbb{C})=\{$ complex 3 -by- 3 matrices with trace $=0\}$ with generators:

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& F_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), F_{2}
\end{aligned}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), ~\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), H_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

$V=\left\{e_{1}, e_{2}, e_{3}\right\}+$ matrix action : (3) $\underset{F_{2}, 1}{\stackrel{E_{2}, 1}{\leftrightarrows}} \underset{F_{1}, 1}{E_{1}, 1}(1)$

- The Chevalley generators are "matrices" such as the ones above
- With these representations are labeled weighted graphs (above only $E, F \mathrm{~s}$)
- Problem These graphs get messy fast and are not super helpful

Crystals

Crystal $=$ labeled graph; one label for every F_{i}

- Idea The crystal of a representation is the graph of leading terms of the action of F_{i}, e.g.

$$
F_{i} \subset v_{j}=v_{k}+\text { friends } \Rightarrow \text { draw an edge } v_{j} \rightarrow v_{k}
$$

Enter, the theorem

We have the following (many more nice things about crystals are true):
(i) Every representation has an associated crystal Existence
(ii) The crystal determines the representation Uniqueness
(iii) Connected components $\leftrightarrow \rightsquigarrow$ to simple representations Combinatorial properties are encoded

- Here is an example of a tensor product:

- Here connected components correspond to the tensor product decomposition

Temperature zero

Third Law of Thermodynamics

Entropy (S) of a pure crystal is zero as the temperature (T) approaches absolute zero

$T=0$
$S=0$

$T>0$
$S>0$

Big question How to define "leading term"?

- Trick There is a "quantum object" and a "canonical basis" where the action coefficients are in $\mathbb{Z}[q]$, e.g. $1+2 q^{2}+2 q^{4}+q^{6}$

Absolute zero Specializing $q=0$ gives the leading term

Thank you for your attention!

I hope that was of some help.

