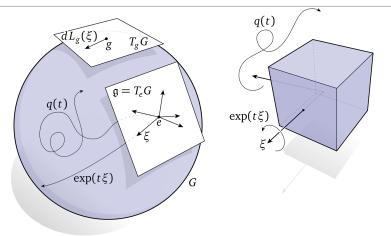
What is...Freudenthal's magic square?

Or: Exceptional!

Lie groups and algebras

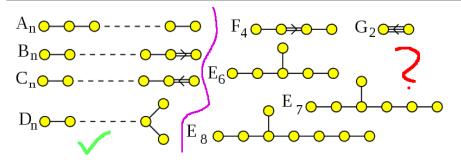


► Lie groups ↔ continuous Galois theory ↔ continuous symmetries ; Lie algebras ↔ first order approximations of these

• Key formula for going between Lie groups and algebras: det $e^A = e^{\text{tr}A}$

• Example The Lie group $SL_2(\mathbb{C})$ (det=1) has $\mathfrak{sl}_2(\mathbb{C})$ (tr=0) as its Lie algebra

Classification is it!



 $\mathfrak{sl}_n, \mathfrak{so}_{2n+1}, \mathfrak{sp}_{2n} \text{ and } \mathfrak{so}_{2n} \longleftrightarrow A_n, B_n, C_n, D_n$

• Question Can we classify the elements of Lie theory (simple Lie algebras)?

► Answer Yes we can (say over ℂ)!

- ▶ We have the natural families \mathfrak{sl}_n , \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} and \mathfrak{so}_{2n}
- ► A five "weird" exceptions

Question Where do the weird exceptions come from?

One square to find them

A \ B	\mathbb{R}	\mathbb{C}	H	\bigcirc	
\mathbb{R}	A ₁ •	A ₂	C₃ ∕≓∙◆	F ₄ ⊶≎≓• •●	
\mathbb{C}	A₂ ⊶•	$\begin{array}{c} A_2 \times A_2 \\ \bullet \bullet \\ \bullet \bullet \end{array}$		E ₆ ••• € •••	
\mathbb{H}	C₃ ✓ ⊂ ● ●	A ₅	D ₆ ◆ ◆ ◆ ◆ ◆	E ₇	
\mathbb{O}	F ₄ ⊶≎≓•••	•••••	€7 ◆◆◆◆◆◆	••••••	

- ► Freundenthal–Tits Construction of a Lie algebra / Dynkin diagram from a pair of division algebras *A*, *B*
- Last video The key division algebras are \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{O} (octonions)
- ▶ \bigcirc then creates all expectational types (G_2 appears as automorphism)

For a pair of division algebras A, B let

$$L = (\operatorname{der}(A) \oplus \operatorname{der}(J_3(B))) \oplus (A_0 \otimes J_3(B)_0)$$

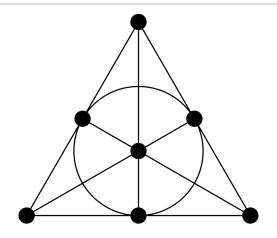
and the corresponding Lie algebras are

	В	R	C	н	0	A \ B	R	\mathbb{C}	H	O
							A ₁	A ₂	C ₃	F ₄
Α	der(A/B)	0	0	\mathfrak{sp}_1	\mathfrak{g}_2	R	0	⊶0	,≓ •••	⊶⊖≓ ••●
R	0	\mathfrak{so}_3	\mathfrak{su}_3	\mathfrak{sp}_3	\mathfrak{f}_4	C	A₂ ⊶⊙	$A_2 \times A_2$		
С	0	\mathfrak{su}_3	$\mathfrak{su}_3\oplus\mathfrak{su}_3$	\mathfrak{su}_6	\mathfrak{e}_6	IHI	C ₃	A ₅	D ₆	E ₇
н	\mathfrak{sp}_1	\mathfrak{sp}_3	\mathfrak{su}_6	\mathfrak{so}_{12}	\mathfrak{e}_7		⊶⊶	••••	• • • • • •	<u> </u>
ο	\mathfrak{g}_2	\mathfrak{f}_4	e ₆	e ₇	e ₈	O	F ₄ ↔ ⊃ ≟ ● ●		E7	•••••

Thus, we get the exceptional types from $\ensuremath{\mathbb O}$

- ▶ $\partial \mathfrak{er} =$ derivations; J = Jordan algebra
- ▶ \mathfrak{su}_n is the compact version of \mathfrak{sl}_n

Fano again...?



- \blacktriangleright ${\mathbb O}$ can be constructed from the $\mbox{ Fano plane}$, so exceptional Lie algebras can
- ► Many sporadic groups can be constructed from the Fano plane
- ▶ In some sense the Fano plane is thus the exceptional object in math

Thank you for your attention!

I hope that was of some help.