
What is...planarity testing?

Or: Finding planar embeddings



Planar graphs

▶ Planar graph = a graph that can be drawn in the plane without edges crossing

▶ Planarity is usually very tricky to decide by hand

▶ Question Can we effectively decide whether a graph is planar?



An easy bound

K7 :

for complete graphs Kn : n(n − 1)/2 ≤ 3n − 3 ⇔ n ≤ 6

▶ Lemma If G is planar, then #edges E ≤ 3#vertices V - 3 (not optimal)

▶ Hence, we can immediately conclude that most graphs are not planar (they

have too many edges)

▶ The proof of this lemma is a not too difficult Euler characteristic argument



Creating palm trees

▶ Depth First Search (DFS) creates a palm tree out of a graph in

O(#V +#E ) with backwards edges (=edges not in the tree)

▶ Idea Search for new neighbors until you run out of options

▶ Algorithm (Hopcroft–Tarjan ∼1974) Find a cycle (also O(#V +#E )) in

the palm tree, delete it, check recursively planarity of the remaining pieces and
the cycle, and determines whether the embeddings of these can be combined



Enter, the theorem

Hopcroft–Tarjan’s algorithm runs in O(#V ) and decides planarity

f ∈ O(g) means f growths no faster than g

▶ Note that one step was O(#V +#E ) but we have #E ≤ 3#V − 3

▶ The algorithm also finds an embedding if one exists



This planarity testing uses the Jordan curve theorem

▶ Pick a cycle c along the palm tree: this has one backwards edge; collect the

remaining pieces

▶ Each piece can go either inside or outside of c by the Jordan curve theorem

▶ We add new pieces and move old pieces if necessary until either a piece

cannot be added or the entire graph is embedded in the plane



Thank you for your attention!

I hope that was of some help.


