What are...sporadic groups?

Or: Weird, but interesting

The periodic table

Simple group = a group without substructure (normal subgroup) = an element

- Periodic table of group theory = classification of finite simple groups; one of the main math achievements of the 20th century
- Roughly Everything is a group Lie-type except some sporadic examples

The Mathieu groups

	-												
	r			T		J(1), J(11)	НJ	HJM				F ₂ , HHM, HTH	
I	M ₁₁	M ₁₂	M ₂₂	M ₂₃	M ₂₄	J1	J_2	J3	J_4	HS	McL	He	Ru
I	7 920	95 040	443 520	10 200 960	244 823 040	175 560	604 800	50 232 960	86 775 571 046 077 562 880	44 352 000	898 128 000	4 030 387 200	145 926 144 000
S													

Sz	O'NS, O-S	-3	·2	-1	F3, D	LyS	F3, E	M(22)	M(23)	$F_{3+}, M(24)'$	F2	F_1, M_1
Suz	O'N	Co ₃	Co ₂	Co_1	HN	Ly	Th	Fi22	Fi23	Fi'_{24}	В	M
448 345 497 600	460 815 505 920	495 766 656 000	42 305 421 312 000	4 157 776 806 543 360 000	273 030 912 000 000	51765179 004000000	90 745 943 887 872 000	64 561 751 654 400	4 089 470 473 293 004 800	1 255 205 709 190 661 721 292 800	4 134 781 481 236 438 194 177 588 568 300 000	809 827 424 794 512 875 896 409 994 961 739 757 805 754 345 880 800 300

- ► The groups of Lie-type were well-known for a long time
- ► Essentially in parallel, Mathieu ~1861 discovered the first sporadic groups
- Construction Augmented symmetries of naturally appearing objects

Enter, Janko

M ₁₁ 7920	M ₁₂ 95 040	M ₂₂ 443 520	M23	M24	J(1), J(11) J1 175 560	нј J2 604 800	нјм Јз 50 232 960	J4 86775571046 077562880	HS 44 352 000	McL 898 128 000	ғ., ннм, нтн Не 4030 387 200	Ru 145 926 144 000
		_										

Sz	O'NS, O-S	-3	-2	-1	F ₃ , D	LyS	F ₃ , E	M(22)	M(23)	$F_{3+}, M(24)'$	F2	F_1, M_1
Suz	O'N	Co ₃	Co ₂	Co_1	HN	Ly	Th	Fi22	Fi23	Fi'_{24}	В	M
448 345 497 600	460 815 505 920	495 766 656 000	42 305 421 312 000	4 157 776 806 543 360 000	273 030 912 000 000	51765179 004000000	90 745 943 857 872 000	64 561 751 654 400	4 089 470 473 293 004 800	1 255 205 709 190 661 721 292 800	4 134 781 481 234 438 194 177 588 566 380 000	809 827 424 744 512 875 896 409 994 961 733 757 805 754 345 886 800 300

2. The group theorist Bertram Huppert said of J₁: "There were a very few things that surprised me in my life... There were only the following two events that really surprised me: the discovery of the first Janko group and the fall of the Berlin Wall."

▶ Janko ~1965 constructed the first sporadic groups since Mathieu

• Golden era All other sporadic groups were discovered within 20 years

• Construction Augmented symmetries of naturally appearing objects

There are precisely 24 sporadic groups

- ► There is thus a largest sporadic group, the so-called monster
- Construction Augmented symmetries of naturally appearing objects
- Almost all sporadic groups are subgroups of the monster group M and M = "symmetries of a certain monster Lie algebra"

Constructing J₂

- \blacktriangleright J₂ is a index 2 subgroup in the automorphisms of a graph HJ on 100 vertices
- Construction Take the Fano plane with 7 points/lines, add 1 dummy + 21 flags (point-line pair) ⇒ the Fano graph on 36 vertices
- Construction-continued Add another dummy and 63 vertices coming from 63 involutions of U(3,3)

Thank you for your attention!

I hope that was of some help.