What is...the Bruhat decomposition?

Or: Lower and upper

The lower-upper (LU) decomposition

Gaussian elimination

► That the LU decomposition works follows from Gaussian elimination

► The LU decomposition origins are hence early on e.g. in "The Nine Chapters on the Mathematical Art" ~10th-2nd century BCE Turning lower into upper

- Observation We can always turn a lower matrix into an upper one
- ► The price we pay doing this are permutation matrices for the longest permutation w₀

Enter, the theorem

We have the Bruhat decomposition :

 $G = \bigcup_{w \in W} BwB$

where $G = GL_n(\overline{\mathbb{K}}) = \text{invertible } n\text{-by-}n \text{ matrices}, B = \text{upper triangular matrices}, W = \text{symmetric group in } \{1, ..., n\}$

Actually its much more general

Type		Lie algebra	
A_n		\mathfrak{sl}_{n+1}	
B_n		\mathfrak{so}_{2n+1}	
C_n		\mathfrak{sp}_{2n}	
D_n		\mathfrak{so}_{2n}	
g	W		W
A_r	S_{r+1}		(r+1)!
B_r	$\mathbb{Z}_2^r \rtimes \mathrm{S}_r$		$2^r r!$
C_r	$\mathbb{Z}_2^r \rtimes \mathrm{S}_r$		$2^r r!$
D_r	$\mathbb{Z}_2^{r-1} \rtimes \mathrm{S}_r$		$2^{r-1} r!$

- ► The Bruhat decomposition works actually very general
- ► G = connected, reductive algebraic group over an algebraically closed field; B = Borel; W = Weyl group
- ► In this case we still have $G = \bigcup_{w \in W} BwB$

Thank you for your attention!

I hope that was of some help.