> What is...the Bruhat decomposition?

Or: Lower and upper

The lower-upper (LU) decomposition

- LU decomposition = we can write a matrix as a product $M=L U$
- L is lower triangular lower triangular; U is upper triangular
- In general we need a permutation matrix P as well and $M=P L U$

Gaussian elimination

- That the LU decomposition works follows from Gaussian elimination
- The LU decomposition origins are hence early on e.g. in "The Nine Chapters on the Mathematical Art" ~10th-2nd century BCE

Turning lower into upper

$$
\begin{aligned}
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c & b \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
L & =P\left(w_{0}\right) U P\left(w_{0}\right)
\end{aligned}
$$

- Observation We can always turn a lower matrix into an upper one
- The price we pay doing this are permutation matrices for the longest permutation w_{0}

Enter, the theorem

We have the Bruhat decomposition

$$
G=\bigcup_{w \in W} B w B
$$

where $G=\mathrm{GL}_{n}(\overline{\mathbb{K}})=$ invertible n-by- n matrices, $B=$ upper triangular matrices, $W=$ symmetric group in $\{1, \ldots, n\}$

- Example

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

- Example

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 4 / 3 \\
0 & 2 / 3
\end{array}\right)
$$

Actually its much more general

Type	Lie algebra
A_{n}	$\mathfrak{s l}_{n+1}$
B_{n}	$\mathfrak{s o}_{2 n+1}$
C_{n}	$\mathfrak{s p}_{2 n}$
D_{n}	$\mathfrak{s o}_{2 n}$

\mathfrak{g}	W	$\|W\|$
A_{r}	$\mathrm{~S}_{r+1}$	$(r+1)!$
B_{r}	$\mathbb{Z}_{2}^{r} \rtimes \mathrm{~S}_{r}$	$2^{r} r!$
C_{r}	$\mathbb{Z}_{2}^{r} \rtimes \mathrm{~S}_{r}$	$2^{r} r!$
D_{r}	$\mathbb{Z}_{2}^{r-1} \rtimes \mathrm{~S}_{r}$	$2^{r-1} r!$

- The Bruhat decomposition works actually very general
- $G=$ connected, reductive algebraic group over an algebraically closed field; B = Borel; $W=$ Weyl group
- In this case we still have $G=\bigcup_{w \in W} B w B$

Thank you for your attention!

I hope that was of some help.

