What are...Coxeter complexes?

Or: Spheres and points

Acting on triangles

• Task Associate a geometric object to the symmetric group S_n

Starting point S_n acts on an n-1 simplex (triangle for n=3)

▶ The action is generated by the reflections for $(i, i + 1) \in S_n$

Reflections in triangles

▶ s = (1,2) and t = (2,3) generate the S_3 -action on the triangle

- ▶ Take the reflection hyperplanes H_s and H_t for them and their orbits
- The hyperplane complement is separated into chambers where S_3 acts faithfully

Gluing pieces into a sphere

•
$$S_3 = \{id, s, t, st, ts, sts = tst\}$$

- Mark one/any chamber *id* and follow the reflection action by s and t
- ▶ The polygon that is traced out is the Coxeter complex of S_3

The S_n Coxeter complex can be defined for any n and is homeomorphic to a sphere S^{n-2}

- Above The Coxeter complex of S_4
- Slide before The Coxeter complex for S_3 is homeomorphic to S^1

Its even more general

► The Coxeter complex C(G) can be defined for any reflection group G = (W, S)
► Theorem C(G) ≅ S^{|S|-1} for G finite and C(G) is contractible otherwise

Thank you for your attention!

I hope that was of some help.