What are...Coxeter complexes?

Or: Spheres and points

Acting on triangles

The symmetric group in three letters acts on a triangle via the rule " green $=1$, red $=2$, blue $=3$, and then permute":

- Task Associate a geometric object to the symmetric group S_{n}
- Starting point S_{n} acts on an $n-1$ simplex (triangle for $n=3$)
- The action is generated by the reflections for $(i, i+1) \in S_{n}$

Reflections in triangles

- $s=(1,2)$ and $t=(2,3)$ generate the S_{3}-action on the triangle
- Take the reflection hyperplanes H_{s} and H_{t} for them and their orbits
- The hyperplane complement is separated into chambers where S_{3} acts faithfully

Gluing pieces into a sphere

- $S_{3}=\{i d, s, t, s t, t s, s t s=t s t\}$
- Mark one/any chamber id and follow the reflection action by s and t
- The polygon that is traced out is the Coxeter complex of S_{3}

Enter, the theorem

The S_{n} Coxeter complex can be defined for any n and is homeomorphic to a sphere S^{n-2}

- Above The Coxeter complex of S_{4}
- Slide before The Coxeter complex for S_{3} is homeomorphic to S^{1}

Its even more general

- The Coxeter complex $C(G)$ can be defined for any reflection group $G=(W, S)$
- Theorem $C(G) \cong S^{|S|-1}$ for G finite and $C(G)$ is contractible otherwise

Thank you for your attention!

I hope that was of some help.

