What is...the partition number?

Or: To count or not to count...

(Integer) partitions

Partitions of $n=$ a way of writing n as a sum of positive integers, ignoring order

- Counting them is a classical problem: "find $p(n)=$ number of partitions"
- But how do we do this?

Partitions and pentagons

$1=1+0 \quad 7=5+2 \quad 19=12+7 \quad 37=22+15$

$$
p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+\cdots \quad \sum_{k \neq 0}^{k-1}(n)
$$

- $p(n)$ can be computed recursively using pentagonal numbers g_{k}
- Problem The formula is recursive, so is not really counting

Partitions and generating functions

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p(n) q^{n}=\prod_{j=1}^{\infty} \sum_{i=0}^{\infty} q^{j i}=\prod_{j=1}^{\infty}\left(1-q^{j}\right)^{-1} \\
& \sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-x^{k}}\right) \\
&=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x^{2}+x^{4}+x^{6}+\cdots\right)\left(1+x^{3}+x^{6}+x^{9}+\cdots\right) \cdots \\
&=\frac{1}{1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+x^{22}+x^{26}-\cdots} \\
&=1 / \sum_{k=-\infty}^{\infty}(-1)^{k} x^{k(3 k-1) / 2}
\end{aligned}
$$

Example:

$$
[1,0,1,0,1,0 \ldots] \leftrightarrow 1+x^{2}+x^{4}+x^{6} \ldots=\frac{1}{1-x^{2}}
$$

Multiplying the generating function by 2 gives

$$
\frac{2}{1-x^{2}}=2+2 x^{2}+2 x^{4}+2 x^{6} . .
$$

- $p(n)$ can be computed using a generating function (via Taylor expansion)
- Problem The formula is still uses a calculation, so is not really counting

Enter, the theorem

Asymptotically:

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

- Asymptotic means $\lim _{n \rightarrow \infty} b(n) / a(n) \rightarrow 1$:

- Here is a comparison between $p(n)$ and its asymptotic formula:
- This is somewhat still not really counting

Its really not counting

Partition asymptotics - difference

- The asymptotic $p(n) \sim f(n)$ is good
- The formula $f(n)=\frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)$ is good
- This is still not really counting : the difference can get arbitrary large

Thank you for your attention!

I hope that was of some help.

