Or: To count or not to count...



(Integer) partitions
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» Partitions of n = a way of writing n as a sum of positive integers, ignoring order

» Counting them is a classical problem:

» But how do we do this?

“find p(n) = number of partitions”



Partitions and pentagons

1=14+0 7=5+2 19=12+7 37=22+15
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» p(n) can be computed | recursively using pentagonal numbers gy

» Problem The formula is recursive, so is [not really counting



Partitions and generating functions
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Example:
[1,0,1,0,1,0..] < 1+ +a*+2b =1z

Multiplying the generating function by 2 gives

= = 2+ 222 + 22 + 225,

» p(n) can be computed using a | generating function | (via Taylor expansion)

» Problem The formula is still uses a calculation, so is | not really counting



Enter, the theorem

Asymptotically:
p(n) ~ ﬁexp (7T %)

» Asymptotic means lim,_ b(n)/a(n) — 1:

13
1.2}

a(n) ~ b{n): /\VAVAVAVAVAVA;-.

» Here is a comparison between p(n) and its asymptotic formula:
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» This is somewhat still [not really counting



Its really not counting

Partition asymptotics - difference
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» The asymptotic p(n) ~ f(n) is |good
» The formula f(n) = ﬁexp (77 2—3”) is good

» This is still 'not really counting : the difference can get arbitrary large



| hope that was of some help.



