What are...Kronecker coefficients?

Or: Terribly difficult

Symmetry is everywhere

- Symmetry can be mathematically modeled using representations
- The elements of the theory are called simples
- The study of simples corresponds to the study of the basic symmetries

Symmetry type $=$ groups

The symmetric group in three letters acts on a triangle via the rule
"green $=1$, red $=2$, blue $=3$, and then permute":

- One categorizes symmetries by type which mathematically speaking are group
- Example A symmetric group symmetry is some form of shuffle symmetry
- Example A triangle also has a shuffle-type symmetry

They are actually not that difficult!

- Task Classify all the simple $=$ elements shuffle symmetries
- Frobenius ~ 1895 There is a very satisfying answer
- The simple shuffle symmetries V_{λ} are indexed by partitions λ and much more is known about them (dimensions, characters...)

Enter, the theorem

Regarding products of shuffle symmetries:

(i) Existence (easy) There exist $g_{\lambda, \mu}^{\kappa} \in \mathbb{N}$ such that

$$
V_{\lambda} \otimes V_{\mu} \cong \bigoplus_{\kappa} V_{\kappa}^{\oplus g_{\lambda, \mu}^{\kappa}}
$$

(ii) Deciding whether $g_{\lambda, \mu}^{\kappa} \neq 0$ is NP-hard (difficult)
(iii) Computing $g_{\lambda, \mu}^{\kappa}$ is \#P-hard (super difficult)

- Note the complexity jump from one factor to two factors

- This is just the tip of the iceberg: product are often very difficult

Terrible, but maybe not

- A lot of "difficult" problems are actually easy on large subclasses
- Example The Hamiltonian path problem is very difficult in general but e.g. easy on 4-connected planar graphs
- The same happens for the $g_{\lambda, \mu}^{\kappa}$: they are often easy to compute

Thank you for your attention!

I hope that was of some help.

