Or: Why we comultiply



Multiplication is asymmetric
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» Multiplication m is |everywhere , e.g. C[G]=group algebra, then m(g, h) = gh works

A

» We can illustrate this using a trivalent vertex

» Doing this shows asymmetry : why not flip the picture?



Flip pictures
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» Comultiplication d is defined by  flipping the multiplication
» We assume the same axioms but flipped

» Example| C[G]=group algebra, then d(g) = g ® g works



The antipode is a bit obscure
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» Analyzing examples , as e.g. on the final slide, gives the antipode S: A — A
» Looks slightly obscure , but is actually good believe me ;-)

» [Example C[G]=group algebra, then S(g) = g~ works



Enter, the theorem
Hopf algebras exist and are everywhere

» Here is the diagrammatic definition of a Hopf algebra:

» [Example C[G]=group algebra with structures as before
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Remarks

Conversely, every
commutative
involutive reduced
Hopf algebra over
€ with a finite
Haar integral
arises in this way,
giving one
formulation of
Tannaka-Krein
duality.15]
Conversely, every
commutative Hopf
algebra overa
field arises from a
group scheme in
this way, giving an
antiequivalence of
categories.(16]
symmetric algebra
and exterior
algebra (which are
quotients of the
tensor algebra)
are also Hopf
algebras with this
definition of the
comultiplication,
counit and
antipode

There are trillions of examples — too

many to fit on this

slide



| hope that was of some help.



