Or: Better than Taylor



Approximation using easier functions

“ 9 fx) = (3 +3x% - 6x - 8)/4

Linear: , Polynomial: /\

Rational: 5

» Analysis is powerful but ' difficult
» Algebra is less powerful but ‘'much easier

» Idea Approximate functions of analysis using functions of algebra



Step 1: linear approximation

» The tangent is a linear approximation for a function
» As an approximation this is not all that great

» |First idea Take higher derivatives into account



Step 2: polynomial approximation
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» Cut-offs of the | Taylor expansion are polynomial approximations for a function
» As an approximation this is ok but still not perfect

» [ldea Why not use rational functions?



Enter, the theorem

There exists a | “best” approximation of a function near a specific point by a
rational function R(x) of given order
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» This Padé approximation can be [computed from | the Taylor series

» “Best” means:

f(nH»n) (0) — R(m+n,) (0)



The approximation is quite good

exp(x) ® 14+ x4+ 1/2-x* versus exp(x) ~ (2 + x)/(2 — x)
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» The Padé approximation is often better than Taylor even when using lower orders
» It also may still 'work where the Taylor series does not converge

» Padé’s approximation [improves the method truncating a Taylor series



| hope that was of some help.



