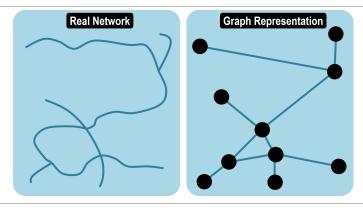

What are...computer conjectures?

Or: A computer can write poems, so...

Conjectures!

- ► Mathematics is, at least partially, about good conjectures
- Although it took a while to get started, computers are nowadays key for the art of conjecturing
- Early and famous example The Birch and Swinnerton-Dyer conjecture (millennium price problem) was discovered by computer
- In this video we discuss how machines can generate conjectures "themselves"

Stage 1: computer assisted conjectures



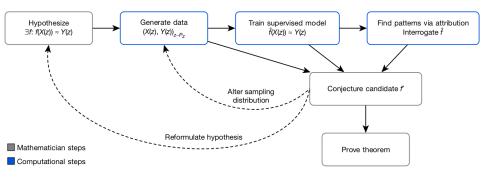
Above A Magma calculation

- ► Conjectures are often born from calculations, e.g. from hand-calculate prime tables
- ► Since ~1950 computers have successively replaced by hand calculations and one gets more data for conjectures

Stage 2: computer generated conjectures

- Bait Graffiti (\sim 1985) is a program that knows certain graphs and graph properties
- ► Graffiti creates conjectures by data search, trying to match graph+property
- Catch Most crucially, the setting is very restricted and almost all conjectures are rather boring
- ► Graffiti was the first of its kind but we have many others now

Enter, the theorem


Graffiti found the following nontrivial conjectures on the first run :

 average temperature ≤ rank average temperature ≤ variance of degree + maximal frequency of degree inverse degree ≤ Randic index + maximal frequency of degree mode of distance ≤ radius + Randic index mode of distance ≤ average distance + Randic index 	 radius ≤ independence average temperature ≤ chromatic number
 mode of distance ≤ matching + average distance radius ≤ zenith + maximal frequency of degree radius ≤ variance of degree + maximal frequency of degree radius ≤ Randic index + average temperature radius ≤ Randic index + variance of degree radius ≤ average distance + Randic index radius ≤ 1 + Randic index average distance ≤ Randic index average distance ≤ independence average distance ≤ variance of degree + maximal frequency of degree average distance ≤ variance of degree + inverse degree average distance ≤ mode of distance + inverse degree average distance ≤ mode of distance + inverse degree average distance ≤ mode of distance + inverse degree average distance ≤ 1 + rank 	S. Fajilowicz 3. diameter ≤ rank 4. radius ≤ matching 5. average distance ≤ 1 + matching 6. inverse degree ≤ independence + Randic index 7. inverse degree ≤ matching + independence 8. Randic index ≤ matching + independence 9. Randic index ≤ matching + independence 9. Randic index ≤ matching + Randic index 10. average degree ≤ matching + Randic index 11. Randic index ≤ matching + inverse degree 12. matching ≤ Randic index + inverse degree

The conjectures on the right have been proven quickly

The author of Graffiti states: "None of these theorems are very difficult, but almost every one, I think, is of some interest"

Stage 3: computer guided conjectures

- ▶ Idea Machine learning has tools that can effectively detect patterns in data
- ► Hypothesize $\exists f$, then estimate a function \hat{f} and try to find a closed form f' if \hat{f} is better than expected by chance, there might be such a relationship
- These machine learning methods already gave new discoveries in topology and in representation theory

Thank you for your attention!

I hope that was of some help.