What is...homotopy type theory?

 $\mathsf{Or:}\ \mathsf{HoTT}=\mathsf{Ho}+\mathsf{TT}$

Homotopy (Ho)

- ► Ho is the study of spaces up to continuous deformation called homotopies
- Homotopies are main concepts of algebraic topology since homotopic spaces have the same algebraic invariants
- ► It took a while to take off due to its slightly strange behavior for geometric topology

Type theory (TT)

TT is maybe more category theory than set theory

- TT was invented to avoid paradoxes in set theory using the notion of types
- ► Types are main concepts of computer science and they motivated data types
- ► It took a while to take off due to its slightly complicated formulation for set theory

Homotopy type theory (HoTT)

Figure 6.1: The topological induction principle for S¹ Figure 6.2: The type-theoretic induction principle for S¹

Logic mimics topology

- HoTT interprets type theory using homotopy
- Idea Types are spaces, called homotopy types, and logical constructions are homotopy-invariant constructions on spaces
- First upshot Manipulate spaces without having to develop point-set topology or $\mathbb R$

In HoTT one can do both, define the sphere S^n as a type, and define

homotopy groups $\pi_n(A)$ of types and one gets the famous

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	π_{13}	π_{14}
S^0	- 0	0	- 0	0	0	0	0	0	0	0	0	0	0	0
S^1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0
S^2	0	Z	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{2}$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^3	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^4	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z} \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^{2}$	$(\mathbb{Z}/2)^{2}$	$\mathbb{Z}/3 \times \mathbb{Z}/24$	Z/15	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$	$\mathbb{Z}/2 \times \mathbb{Z}/12 \times \mathbb{Z}/120$
S^5	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	Z/24	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	Z/30	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$
S^6	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/60$	$\mathbb{Z}/2 \times \mathbb{Z}/24$
S^7	0	0	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$	Z/120
S^8	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$
S^9	0	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0
S^{10}	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0
S^{11}	0	0	0	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$
S^{12}	0	0	0	0	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$
S^{13}	- 0	0	0	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$
S^{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	Z

 $\pi_n(S^n)\cong\mathbb{Z}$

This is a new method of proof in classical Ho

- ▶ The (first) proof uses a crucial axiom only accessible in HoTT
- ► This proof can be formalized in a proof assistant and verified by a computer
- ▶ In fact, one main application is in proof verification and automated proof writing

No equality, please

Path Equivalence

Two paths are homotopy equivalent

if there is at least one surface linking one to the other.

► HoTT replaces equality by homotopy

• Equality a = b becomes a path $a \rightarrow b$ in a space

► This makes topology appear in logic – "surfaces between equal terms"

Thank you for your attention!

I hope that was of some help.