## What is...the balanced graph theorem?

Or: Sudden appearance

## The "essence" of randomness

## The Infinite Monkey Theorem

Infinity is in the hand and


The monkey seriously needs a more modern device

- What is random? Guess: random = everything that can happen happens eventually
- Analogy A monkey would almost surely type every possible finite text an infinite number of times
- Let us test the guess in graph theory!


## Random graphs



- In this video random graph $=$ coin flip graph $G_{n, p}$ on $n$ vertices
- $G_{n, p}=$ flip a (biased) coin for every pair of vertices $v \neq w$
- Put an edge $v-w$ with probability $0 \leq p \leq 1$

The target: balanced graphs


- A graph is balanced if no subgraph of it has > average degree $d=|E| /|V|$
- Example Complete graphs, cycles and trees are balanced
- Question How like appears $B_{k, l}$ (balanced with $k$ vertices and $/$ edges) in $G_{n, p}$ ?


## Enter, the theorem

$$
\text { Let } k \geq 2 \text { and } k-1 \leq I \leq k(k-1) / 2
$$

(1) If $p(n) n^{k / I} \rightarrow_{n \rightarrow \infty} 0$, then almost no $G_{n, p}$ contains a $B_{k, l}$
(2) If $p(n) n^{k / I} \rightarrow_{n \rightarrow \infty} \infty$, then almost all $G_{n, p}$ contain a $B_{k, l}$

- We allow $p$ to vary with $n$
- Example $p(n)=0.5$, then "almost all" applies
- Example If $p(n)=1 / n^{2}$, then the $B_{k, l}$ appear rather suddenly


Random is still random


- "Random = everything that can happen happens eventually" still works
- But when one varies the probability there might be noncontinuous behavior
- Question What happens if the monkey hits ' $G$ ' with probability $p \rightarrow 0$ ?

Thank you for your attention!

I hope that was of some help.

