What is...the matrix equivalence theorem?

Or: One is ok. Two is, well... Three is impossible

- Matrices $A=\left(A_{1}, \ldots, A_{m}\right)$ and $B=\left(B_{1}, \ldots, B_{m}\right)$ are simultaneously equivalent if:

$$
(A \sim B) \Leftrightarrow\left(\exists P, Q: \forall i: A_{i}=Q^{-1} B_{i} P \text { with } P, Q \text { invertible }\right)
$$

Crucial: There is only one P and one Q

- Question How can we classify equivalent matrices, say over \mathbb{C} ?
- For $m=1$ the classification is given by the rank (known for a long time)

$m=2$ is doable but "ugly"

$$
\begin{aligned}
J_{j}(\alpha) \equiv & \equiv\left[\begin{array}{cccc}
\alpha-\lambda & 1 & & \\
& \cdot & \cdot & \\
& & \cdot & 1 \\
& & & \alpha-\lambda
\end{array}\right] \text { and } N_{j} \equiv\left[\begin{array}{ccc}
1 & -\lambda & \\
& \cdot & \cdot \\
& & \cdot \\
& & \\
& & \\
& & \\
L_{j} & \equiv\left[\begin{array}{cccc}
-\lambda & 1 & & \\
& \cdot & \cdot & \\
& & -\lambda & 1
\end{array}\right] \text { and } L_{j}^{T} \equiv\left[\begin{array}{ccc}
-\lambda & & \\
1 & \cdot & \\
& \cdot & -\lambda \\
& & 1
\end{array}\right]
\end{array}, \gg\right.
\end{aligned}
$$

- For $m=2$ a normal form is given by Kronecker's canonical form
- Kronecker's normal form is similar to the Jordan normal form, but with four different blocks
- For $m=2$ the classification is thus given by finitely many discrete parameters = sizes and types of blocks; and two continuous parameters $=$ "eigenvalues" α and λ

$$
\begin{array}{r}
m=1: \bigcirc \longrightarrow \\
m=2: \bigcirc \longrightarrow \\
m=3: \bigcirc \longrightarrow
\end{array}
$$

- The problem of simultaneous equivalence can be associated to a quiver
- Quiver $=$ directed graph "It contains arrows"
- One then can formally prove that $m=3$ is "impossible"

Enter, the theorem

A matrix problem associated to a finite connected quiver Q without oriented cycles is... (1) ...finite if and only if \bar{Q} is of ADE type
(2) ...infinite tame if and only if \bar{Q} is of affine ADE type
(3) ...wild otherwise

- Finite = classification is given by finitely many discrete parameters; infinite tame $=$ finitely many discrete and continuous parameters; wild $=$ forget it
- $Q=$ the quiver; $\bar{Q}=$ the underlying graph

Q

\bar{Q}

ADE and all that

$\mathrm{A}_{\mathrm{n}} \mathrm{O}-\mathrm{O}-\mathrm{O}-----\mathrm{O}-\mathrm{O}$

- ADE graphs and friends appear everywhere
- Left The ADE types; Right The affine ADE types

Thank you for your attention!

I hope that was of some help.

