Or: The Jordan normal form doesn't get better...



Let us start with vector spaces

Spanning - form a volume

> - Classify vector spaces up to isomorphism

» Solution The dimensions determines the vector space

» Thus, vector spaces are classified by _




Now: endomorphisms of vector spaces
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» A natural equivalence relation on matrices is -

Similarity = A and B are the same matrix up to base change

> - How can we classify similar matrices, say over C?




The Jordan normal form (JNF)
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» Theorem Two matrices are similar if and only if they have the same JNF

» Thus, similarity is  classified by:

finitely many |discrete parameters = sizes of Jordan blocks

finitely many - parameters = eigenvalues



Enter, the theorem

Trichotomy theorem Exactly one of the following holds for A-modules:
(1) The indecomposables are classified by finitely many |discrete parameters

(2) The indecomposables are classified by finitely many [discrete| and - parameters

(3) Thereis no classification scheme

» A = some fin dim algebra
» Indecomposable = elements = X = Y @& Z implies Y or Z is zero

» Thus, classification is like for vector spaces, for similarity or impossible
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Its a fine line

\JHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK...
SURE, EASY GIS LOOKUR
GIMME A FEW HOURS.
.« AND CHECK WUHETHER
THE PHOTD IS OF A BIRD.
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INC5, IT (AN BE HARD To EXPLAIN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY' IMPOSSIBLE.

» Similarity has a | nice solution

» Simultaneous similarity (A, B) ~ (P~1AP,P~1BP) is extremely difficult



| hope that was of some help.



