Or: Area, even without area



Classical convolution

Input Signal, F Impulse Response, G

2 2

) ) N

0 0

a0 8 ®  cohvolutidn LivéBpera]‘.?on 5 o

2 ]

1 /\ T

]

RO B -tonvdlutior Live Butpuf' £ 4 g0
40 - : n ‘ . - . :

]

0 8 6 4 2 0 2 4 6 8 10

» Take two reasonable |functions f, g
» The convolution f * g is the function of the area when sliding g over f

» This originates in | Fourier analysis



Discrete convolution

hik) h(k) x(n-k)
06 06+

.
04 04r

.|
02 02r
.
& K
5 10 15 20 5 10 15 20
. .
0z -02
x(n-k) ¥(n)
15 15
(X ] e
10 ceeresssne 1.0 seee
. .
05 05
. .
. . e,
5 10 15 20 % 5 10 15%® 20

» Take two discrete - f.g

» The convolution f x g is the function of the sum when sliding g over f




Array convolution

» Take two matrices f, g
» The convolution f x g is the function of the sum when sliding g over f

» This originates in |signal processing



Enter, the theorem

Convolution is given by some form of the _
(F+8)0) = [ F()gle ) (F8)(®) =S A8t =x)

Convolution satisfies:
o Commutativity, associativity, distributivity...

e The set of invertible distributions forms an abelian group under the convolution

» Convolution is very important for fast multiplication (next slide)

» Convolution appears for example in fast multiplication algorithms:

Integer multiplication in time O(n logn)

David Harvey
University of NSW / University of Sydney Joint Colloquium
7th May 2019

University of New South Wales
Joint work with Joris van der Hoeven (Ecole Polytechnique, Palaiseau)




Discrete and fast Fourier transform (DFT + FFT)

Evaluation
Time O(n"2)
Coefficient vectors Q(n log n) with FFT Point-value representation
(a0, ..., an-1) e {(x0, A(x0), . . . ,(x2n-1, A(x2n-1))}
(b0, ..., bn=1) {(x0, B(x0), . . . ,(x2n-1, B(x2n—-1))}
Ordinary Pointwise
multiplication mu\t\pllca'llon
Time O(n"2) Time O(n)

Point-value representation
Coefficient vector of product

of product """ ] ((x0, A(X0)B(x0), . ..,(x2n-1,

Interpolation
(cO, ..., c2n-2) Time O(n log n) A(x2n-1)B(x2n-1))}
with FFT

» | Polynomial multiplication cost O(n?), e.g. (a,b) - (c,d) = (ac, ad + bc, bd)
» DFT turns this into pointwise multiplication, which is O(n), via convolution

» [FFT computes DFT and DFT~! in O(nlog n)



| hope that was of some help.



