What is...Karatsuba's algorithm?

Or: Faster than expected

Classical multiplication

$(x-3)(4 x-5)$		
	x	-3
$4 x$	$4 x^{2}$	$-12 x$
-5	$-5 x$	15

$$
\begin{aligned}
& 4 x^{2}-12 x-5 x+15 \\
& 4 x^{2}-17 x+15
\end{aligned}
$$

- Given two polynomials f and g of degree $<n$; we want $f g$
- Classical polynomial multiplication needs n^{2} multiplications and $(n-1)^{2}$ additions; thus mult $($ poly $) \in O\left(n^{2}\right)$
- It doesn't appear that we can do faster

Using more operations...

- Karatsuba ~1960 It gets faster!
- We compute $a c, b d, u=(a+b)(c+d), v=a c+b d, u-v$ with 3 multiplications and 4 additions $=7$ operations - more than before Upshot We only have 3 multiplications not 4

...but fewer multiplications

- Algorithm 8.1 Karatsuba's polynomial multiplication algorithm.

Input: $f, g \in R[x]$ of degrees less than n, where R is a ring (commutative, with 1) and n a power of 2 .
Output: $f g \in R[x]$.

1. if $n=1$ then return $f \cdot g \in R$
2. let $f=F_{1} x^{n / 2}+F_{0}$ and $g=G_{1} x^{n / 2}+G_{0}$, with $F_{0}, F_{1}, G_{0}, G_{1} \in R[x]$ of degrees less than $n / 2$
3. compute $F_{0} G_{0}, F_{1} G_{1}$, and $\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$ by a recursive call
4. return $F_{1} G_{1} x^{n}+\left(\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-F_{0} G_{0}-F_{1} G_{1}\right) x^{n / 2}+F_{0} G_{0}$

Example

$$
\begin{gathered}
f=g=x^{3}+x^{2}+x+1 \text { is equal to } F_{1}+F_{0}=(x+1) x^{2}+x+1 \\
F_{0}^{2}=F_{1}^{2}=(x+1)^{2} \text { and }(2 x+2)(2 x+2) \text { need } 7 \text { ops }=21 \text { ops } \\
\text { To get } f g \text { we then need two more ops }=23 \text { ops } \\
\text { Classical we need } 4^{2}+(4-1)^{2}=25 \mathrm{ops}
\end{gathered}
$$

Enter, the theorem

Karatsuba ~1960 Using k-adic expansion, this works for numbers as well
Theorem (Karatsuba $\sim \mathbf{1 9 6 0}$) For $n=2^{k}\left(n=\#\right.$ digits) we have mult $\in O\left(n^{1.59}\right)$ Ditto for polymult

- Multiplication is everywhere so this is fabulous
- There is also a version for general n but the analysis is somewhat more involved
- Nowadays computer algebra systems have (beefed-up versions of) Karatsuba's algorithm build in

A picture why this is faster

5 iterations
38.2: Cost (= black area) of Karatsuba's algorithm for increasing recursion depths. ige approaches a fractal of dimension $\log _{2} 3 \approx 1.59$.

- The above (ignoring additions) shows why this is much faster
- For $n=2^{k}$ we have $\operatorname{mult}($ poly $) \in O\left(n^{1.59}\right) \quad(1.59 \approx \log (3))$

Thank you for your attention!

I hope that was of some help.

