Or: Faster than expected

Classical multiplication

(x-3)(4x~5)
X -3
4x | 4x? | -12x
-5 -5x 15

4x2% - 12x—5x + 15

4x2 -17x + 15

2~
X
-1

x* -4x -2
2t -8 | -4
-x’| 4x°| 2x
| dx |2

» Given two polynomials f and g of degree < n; we want | fg

» Classical polynomial multiplication needs n?> multiplications and (n — 1)2

additions; thus 'mult(poly) € O(n?)

» It doesn't appear that we can do faster

Using more operations...

a + b a+b
X X xX
(o + d c+d
(a+b)(c+d)
ac + bd ac+bd
x X?

acx bc+ad

xX
(bc+ad)x

acx? + bex + adx + bd
= (ax+b)(cx+d)

» Karatsuba ~1960 It gets faster!

» We compute ac, bd, u=(a+ b)(c+d),v=ac+bd, u—v
with 3 multiplications and 4 additions = 7 operations — more than before

- We only have 3 multiplications not 4

...but fewer multiplications

ALGORITHM 8.1 Karatsuba’s polynomial multiplication algorithm.

Input: f,g € R[x] of degrees less than n, where R is a ring (commutative, with 1)
and n a power of 2.

Output: fg € R[x].

1. if n=1 thenreturn f-g € R

2. let f = Fix"? + Fy and g = G1x"/? + Gy, with Fy, Fi, Go, Gy € R[x] of degrees
less than n/2

3. compute FyGo, F1G1, and (Fy + F1)(Go+ Gi) by a recursive call

4. return F1G X" + ((F() +F1)(Go +G1) — FyGy *F]G]))C"/2 + FoGo

Example
f=g=x>+x>+x+1lisequalto 1 + Fp = (x+1)x* +x+1
F¢ = F2 = (x + 1)? and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops
Classical we need 42 + (4 — 1)? = 25 ops

Enter, the theorem

Karatsuba ~1960 Using k-adic expansion, this works for numbers as well

Theorem (Karatsuba ~1960) For n = 2% we have 'mult € O(n**°)
Ditto for polymult

10000 n? 104 2

1.59
8000 1000 n

6000
100

4000

2000

a9 logplot

20 40 60 80 100 20 40 60 80 100

» Multiplication is everywhere so this is |fabulous

» There is also a version for general n but the analysis is somewhat more involved

» Nowadays computer algebra systems have (beefed-up versions of) Karatsuba's
algorithm build in

A picture why this is faster

» The above (ignoring additions) shows why this is |much faster

» For n =2k we have mult(poly) € O(n**) (1.59 ~ log(3))

| hope that was of some help.

