What is...Karatsuba's algorithm?

Or: Faster than expected

Classical multiplication

(x - 3)(4x - 5)			2	x^2	-4x	-2
	x	-3	$2x^2$	$2x^4$	$-8x^{3}$	$-4x^2$
4x	$4x^{2}$	-12x		23	$1x^2$	2.
-5	-5x	15	-x	- 1	41	ΔX
$4x^2 - 12x - 5x + 15$			-1	$-x^2$	4x	2
$4x^2 - 17x + 15$			2			

- Given two polynomials f and g of degree < n; we want fg
- ► Classical polynomial multiplication needs n^2 multiplications and $(n-1)^2$ additions; thus $mult(poly) \in O(n^2)$
- It doesn't appear that we can do faster

Using more operations...

► Karatsuba ~1960 It gets faster!

▶ We compute ac, bd, u = (a + b)(c + d), v = ac + bd, u - v
with 3 multiplications and 4 additions = 7 operations - more than before
Upshot We only have 3 multiplications not 4

ALGORITHM 8.1 Karatsuba's polynomial multiplication algorithm. Input: $f, g \in R[x]$ of degrees less than *n*, where *R* is a ring (commutative, with 1) and *n* a power of 2. Output: $fg \in R[x]$.

- 1. if n = 1 then return $f \cdot g \in R$
- 2. let $f = F_1 x^{n/2} + F_0$ and $g = G_1 x^{n/2} + G_0$, with $F_0, F_1, G_0, G_1 \in R[x]$ of degrees less than n/2
- 3. compute F_0G_0 , F_1G_1 , and $(F_0 + F_1)(G_0 + G_1)$ by a recursive call
- 4. return $F_1G_1x^n + ((F_0 + F_1)(G_0 + G_1) F_0G_0 F_1G_1)x^{n/2} + F_0G_0$

Example

 $\begin{array}{l} f = g = x^3 + x^2 + x + 1 \text{ is equal to } F_1 + F_0 = (x+1)x^2 + x + 1 \\ F_0^2 = F_1^2 = (x+1)^2 \text{ and } (2x+2)(2x+2) \text{ need 7 ops} = 21 \text{ ops} \\ \text{To get } fg \text{ we then need two more ops} = 23 \text{ ops} \\ \text{Classical we need } 4^2 + (4-1)^2 = 25 \text{ ops} \end{array}$

Enter, the theorem

Karatsuba ~1960 Using k-adic expansion, this works for numbers as well Theorem (Karatsuba ~1960) For $n = 2^k$ (n = #digits) we have $mult \in O(n^{1.59})$ Ditto for polymult

- ► Multiplication is everywhere so this is fabulous
- ▶ There is also a version for general *n* but the analysis is somewhat more involved
- Nowadays computer algebra systems have (beefed-up versions of) Karatsuba's algorithm build in

A picture why this is faster

 ± 8.2 : Cost (= black area) of Karatsuba's algorithm for increasing recursion depths.
uge approaches a fractal of dimension $\log_2 3\approx 1.59.$

- ► The above (ignoring additions) shows why this is much faster
- ▶ For $n = 2^k$ we have $mult(poly) \in O(n^{1.59})$ $(1.59 \approx \log(3))$

Thank you for your attention!

I hope that was of some help.