What are...alpha shapes and complexes?

Or: Topology and its applications

 α shapes

- ▶ Say we have a point cloud of data and we want to known its "shape"
- Form discs of radius α; the α hull is the complement of the union of the discs hitting no point
- ▶ The α shape is obtained by drawing the curved edges straight

α complexes

- ► Say we have a point cloud of data and we want to known its "shape"
- Form discs of radius α around the points + connect the points along intersections
- Fill in potential regions and get the α complex for the points

Hmm, they look kind of similar

- \blacktriangleright The α shape and complex are not equal
- ► For example, one construction uses discs not hitting the points, the other uses discs hitting the points
- Question Is there any relation between the two?

The α shape and complex are homotopy equivalent

Homotopy types of the graphs underlying the alphabet:

Genus 0	Genus 1	Genus 2
CEFGHIJKLMNSTUVWXYZ	ADOPQR	В

► By the way, everything also works in higher dimensions

▶ The above is rather tricky in higher dimensions

Modeling the real world

- \blacktriangleright A major application of α complexes are molecules modeled as unions of balls
 - Example van der Waals diagrams of proteins

Thank you for your attention!

I hope that was of some help.