What is...the commuting matrix theorem?

Or: Around 25\%

- Setting We have k graphs with n vertices; here $X=$ red and $Y=$ Blue
- Observe that \# Red-then-blue paths = \# Blue-then-red paths
- Question What is the maximal k such that all coloring path countings work?

Adjacency matrices

- Setting Take $k n \times n$ matrices, here X and Y as above
- Observe that $X Y=Y X, X X Y=X Y X=Y X X$ etc.
- Question What is the maximal k such that we have k commuting matrices?

- We have infinitely many commuting matrices, namely $M, 2 M, 3 M, \ldots$
- Better: Only consider linearly independent matrices
- Question What is the maximal k such that we have k commuting linearly independent matrices?

Enter, the theorem

Over any field, there are at most $\left\lfloor n^{2} / 4\right\rfloor+1$ commuting $n \times n$ matrices

Thus, the maximal dimensions is about 25% of the whole space

- The bound is achieved (next slide)
- A bit counterintuitive: for large n, pick two $n \times n$ matrices "at random" and they commute with probability ≈ 0

25\% commuting matrices

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& Y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

- The matrices $\left(\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right)$ all commute
- Choose one of the entries of X to have value 1 and the rest zero $\Rightarrow\left\lfloor n^{2} / 4\right\rfloor$
- The +1 corresponds to the identity matrix

Thank you for your attention!

I hope that was of some help.

