What is...the Ax-Grothendieck theorem?

Or: Polynomials rule!

The linear setting

- (Affine) linear functions hit any real number unless they have slope zero
- Slope zero $=$ not injective
- Hence, injective \Rightarrow bijective

The general setting

- General (smooth) functions do not satisfy injective \Rightarrow bijective
- For example, arctan is injective but not bijective
- This cannot be fixed by going to the complex numbers (actually the complex arctan is multi-valued)

The polynomial setting

- General polynomial functions do satisfy injective \Rightarrow bijective
- For example, $x^{\text {odd }}$ is injective and bijective
- This stays the same for $\mathbb{C} \rightarrow \mathbb{C}$ polynomials

Enter, the theorem

Any injective polynomial function $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is bijective

- The same is true for $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ but the proof is more difficult
- The full theorem generalizes to any algebraic variety over an algebraically closed field, e.g. for $\overline{\mathbb{F}_{p}}$

This extends the fundamental theorem of algebra (FToA)

- Proof (sketch) for $n=1$ Fix an injective polynomial p
- Injectivity implies that, for all $z_{0} \in \mathbb{C}$, the function $p(z)-z_{0}$ is not constant
- $\mathrm{FToA} \Rightarrow p(z)-z_{0}=0$ for some $z \in \mathbb{C}$, so $p(z)=z_{0}$ for some $z \in \mathbb{C}$

Thank you for your attention!

I hope that was of some help.

