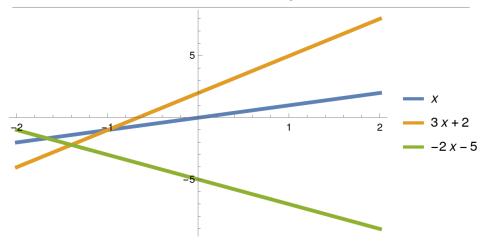
What is...the Ax–Grothendieck theorem?

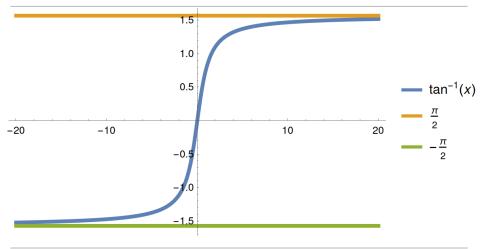
Or: Polynomials rule!

The linear setting



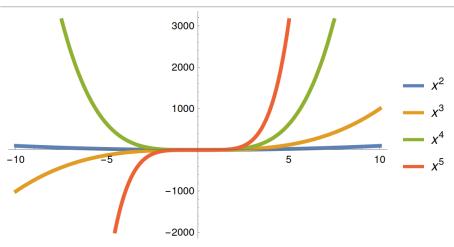
- ► (Affine) linear functions hit any real number unless they have slope zero
- ► Slope zero = not injective
- Hence, injective \Rightarrow bijective

The general setting

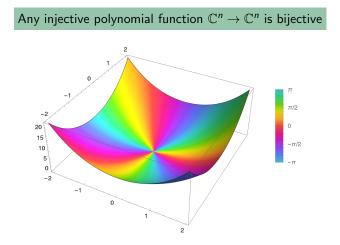


- ▶ General (smooth) functions do not satisfy injective \Rightarrow bijective
- ▶ For example, arctan is injective but not bijective
- This cannot be fixed by going to the complex numbers (actually the complex arctan is multi-valued)

The polynomial setting

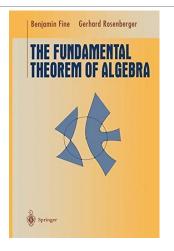


- \blacktriangleright General polynomial functions do satisfy injective \Rightarrow bijective
- For example, x^{odd} is injective and bijective
- \blacktriangleright This stays the same for $\mathbb{C} \to \mathbb{C}$ polynomials



- ▶ The same is true for $\mathbb{R}^n \to \mathbb{R}^n$ but the proof is more difficult
- ► The full theorem generalizes to any algebraic variety over an algebraically closed field, e.g. for F_p

This extends the fundamental theorem of algebra (FToA)



• Proof (sketch) for n = 1 Fix an injective polynomial p

▶ Injectivity implies that, for all $z_0 \in \mathbb{C}$, the function $p(z) - z_0$ is not constant

► **FToA**
$$\Rightarrow$$
 $p(z) - z_0 = 0$ for some $z \in \mathbb{C}$, so $p(z) = z_0$ for some $z \in \mathbb{C}$

Thank you for your attention!

I hope that was of some help.