What is...the choice zoo?

Or: No general choice, please!

The setting

It is a peculiar fact that all the transfinite axioms are deducible from a single one, the axiom of choice, the most challenged axiom in the mathematical literature. D. Hilbert (1926)

It is the great and ancient **prob**lem of existence that underlies the whole controversy about the axiom of choice.

W. Sierpiński (1958)

The Axiom of Choice has easily the most tortured history of all the set-theoretic axioms. Penelope Maddy (Believing the axioms I)¹

Of course not, but I am told it works even if you don't believe in it.

Niels Bohr (when asked whether he really believed a horseshoe hanging over his door would bring him luck).²

► ZF = Zermelo–Fraenkel set theory = standard set axioms for some people

► ZFC = ZF + axiom of choice (AC) = standard set axioms for some other people

Question AC is a bit "weird", so it what sense does one need AC?

"all" is rather large

- ► AC The Cartesian product of nonempty sets is nonempty (an element of that product is a choice function)
- 'Problem' Most sets are "way too big" (at least for my brain) to be of any use

Idea Weaken AC and see whether we can still describe "enough interesting math"

Some first weaker versions

$AC: \prod_{i \in I} X_i \neq \emptyset \text{ whenever all } X_i \neq \emptyset$

- **Definition 2.9.** 1. $\mathbf{CC}(\mathbb{R})$ states that for each sequence $(X_n)_{n \in \mathbb{N}}$ of nonempty subsets X_n of \mathbb{R} , the product set $\prod X_n$ is non-empty.
 - 2. $\mathbf{CC}(\mathbb{Z})$ states that for each sequence $((X_n, \leq_n))_{n \in \mathbb{N}}$, each (X_n, \leq_n) being order-isomorphic to the ordered set of integers, the product set $\prod_{n \in \mathbb{N}} X_n$ is non-empty.
 - 3. **CC**(fin) states that for each sequence $(X_n)_{n \in \mathbb{N}}$ of non-empty, finite sets, the product set $\prod_{n \in \mathbb{N}} X_n$ is non-empty.
 - 4. $\mathbf{CC}(n)$, for $n \in \mathbb{N}^+$, states that for each sequence $(X_n)_{n \in \mathbb{N}}$ of n-element sets, the product set $\prod_{n \in \mathbb{N}} X_n$ is non-empty.
- We have two types of sets: the index set I and the X_i
- We can restrict the types of I or X_i
- ▶ **Example (CC(** \mathbb{R})). Restrict *I* to \mathbb{N} and X_i to $X_i \subset \mathbb{R}$
 - Question In what sense are all the various versions of AC related?

Enter, the theorem

All of these give strictly different set theories with the three exceptions $CC \rightarrow CMC$, $CC(fin) \rightarrow CC(n)$ and $WUF(\mathbb{N}) \rightarrow WUF(?)$ where we do not know (in 2023)

I will describe a subtree on the next slide

More refinements

- CUT = the Countable Union Theorem = countable unions of at most countable sets are at most countable
- CUT(X) = restriction to subsets of \mathbb{R} , finite sets or 2-elements sets
- ► All of these give strictly different set theories with the marked exception where we do not know (in 2023)

Thank you for your attention!

I hope that was of some help.