What is...computational topology?

Or: Subfields of mathematics 6

Sphere recognition in 2d



2 dim manifolds = surfaces

Classifying surfaces (up to homeomorphism) has a nice answer

► Observation The only closed sc surface is a sphere = soccer ball

► Simply-connected (sc) = every curve can be shrunk to a point

Sphere recognition in 3d

## CINQUIÈME COMPLÉMENT À L'ANALYSIS SITUS.

Par M. H. Poincaré, à Paris.

Adunanza del 22 novembre 1903.

Il resterait une question à traiter :

Est-il possible que le groupe fondamental de V se réduise à la substitution identique, et que pourtant V ne soit pas simplement connexe?

► Closed 3 dim manifolds need four-space to be realized, so are hard to imagine

▶ Poincaré ~1904 : classification in 3d is difficult, but maybe:

• Question The only closed sc 3 dim manifold is a sphere? True, but difficult

## Sphere recognition computationally



- Rubinstein and Thompson's 3-sphere recognition algorithm (RT algo) = an algorithm to decide whether a 3 dim manifold is a sphere
- Input A triangulated 3 dim manifold
- ► This means we have a bunch of tetrahedrons

Enter, the theorem



'3-sphere recognition' is also in coNP (provided that the generalized Riemann hypothesis holds) Comparison 'Integer factorization' is also in NP and coNP
Computational topology answers similar questions!

## More questions of computational topology



Theorem 'Unknot recognition' is in NP and coNP

► One looks for ways to efficiently compute homology, knot polynomials, ...

Programs SnapPea, Regina, ...

Thank you for your attention!

I hope that was of some help.