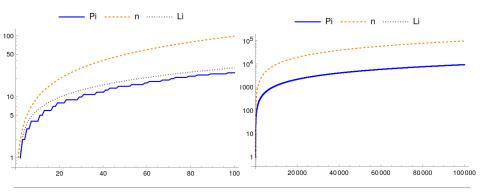
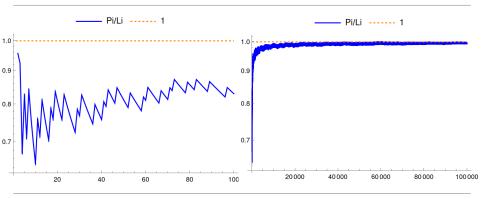
What is...analytic number theory?

Or: Subfields of mathematics 4



The art of not counting primes I

- Prime number function $\pi(n) = \#$ primes $\leq n$
- Counting primes is very tricky as primes "pop up randomly"
- Question 1 What is the leading growth (of the number of primes)?
- Answer 1 There are roughly $c(n) \cdot n$ for sublinear correction term c(n)

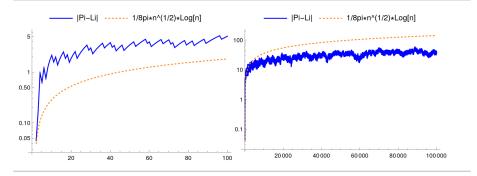


The art of not counting primes II

- Asymptotically equal $f \sim g$ if $\lim_{n \to \infty} f(n)/g(n) \to 1$
- Logarithmic integral $Li(x) = \int_2^x 1/\ln(t) dt$
- Question 2 What is the growth (of the number of primes) asymptotically?

• Answer 2 We have
$$\pi(n) \sim n/\log(n) \sim Li(n)$$

The art of not counting primes III



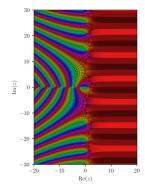
- ► Asymptotically equal does not imply that the difference is good
- |f(n) g(n)| is a measurement of how good the approximation is
- Question 3 What is variance from the expected value (Li(n))?
- Conjectural answer 3 We have $|\pi(n) Li(n)| \in O(n^{1/2} \log n)$ or $|\pi(n) Li(n)| \le \frac{1}{8\pi} n^{1/2} \log n$ (for $n \ge 2657$)

For a and d coprime there are ∞ many primes of the form a + nd

Arithmetic progression	First 10 of infinitely many primes	OEIS sequence
2n + 1	3, 5, 7, 11, 13, 17, 19, 23, 29, 31,	A065091
4n + 1	5, 13, 17, 29, 37, 41, 53, 61, 73, 89,	A002144
4n + 3	3, 7, 11, 19, 23, 31, 43, 47, 59, 67,	A002145
6n + 1	7, 13, 19, 31, 37, 43, 61, 67, 73, 79,	A002476
6n + 5	5, 11, 17, 23, 29, 41, 47, 53, 59, 71,	A007528
8n + 1	17, 41, 73, 89, 97, 113, 137, 193, 233, 241,	A007519
8n + 3	3, 11, 19, 43, 59, 67, 83, 107, 131, 139,	A007520
8n + 5	5, 13, 29, 37, 53, 61, 101, 109, 149, 157,	A007521
8n + 7	7, 23, 31, 47, 71, 79, 103, 127, 151, 167,	A007522
10n + 1	11, 31, 41, 61, 71, 101, 131, 151, 181, 191,	A030430
10 <i>n</i> + 3	3, 13, 23, 43, 53, 73, 83, 103, 113, 163,	A030431
10n + 7	7, 17, 37, 47, 67, 97, 107, 127, 137, 157,	A030432
10 <i>n</i> + 9	19, 29, 59, 79, 89, 109, 139, 149, 179, 199,	A030433
12n + 1	13, 37, 61, 73, 97, 109, 157, 181, 193, 229,	A068228
12n + 5	5, 17, 29, 41, 53, 89, 101, 113, 137, 149,	A040117
12n + 7	7, 19, 31, 43, 67, 79, 103, 127, 139, 151,	A068229
12n + 11	11, 23, 47, 59, 71, 83, 107, 131, 167, 179,	A068231

- Dirichlet's theorem on arithmetic progressions was (one of the first) discrete problems solved using analytic methods
- ► Analytic number theory helps to answer and answers similar questions!

Enter, analysis



- ► Dirichlet's proof uses so-called L-functions
- Example (above) The Riemann zeta function is an L-function
- Key in the proof : Dirichlet's L-function (of a nontrivial character) at 1 is nonzero – this uses analysis

Thank you for your attention!

I hope that was of some help.